Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: (n2 + n - 1)2 - 1
= ( n2 + n - 1 + 1)(n2 + n - 1 - 1)
= (n2 + n)(n2 + n - 2)
= n(n + 1)(n2 + 2n - n - 2)
= n(n+ 1)[n(n + 2) - (n + 2)]
= n(n + 1)(n - 1)(n + 2)
Do n(n + 1)(n - 1)(n + 2) là tích của 4 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
1 thừa số chia hết cho 4
mà (2, 3, 4) = 1
=> n(n + 1)(n - 1)(n + 2) \(⋮\)2.3.4 = 24
=> (n2 + n - 1)2 - 1 \(⋮\)24 \(\forall\)n \(\in\)Z
b) Do n chẵn => n có dạng 2k (k \(\in\)Z)
Khi đó, ta có: n3 + 6n2 + 8n
= (2k)3 + 6.(2k)2 + 8.2k
= 8k3 + 24k2 + 16k
= 8k(k2 + 3k + 2)
= 8k(k2 + 2k + k + 2)
= 8k[k(k + 2) + (k + 2)]
= 8k(k + 1)(k + 2)
Do k(k + 1)(k + 2) là tích của 3 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
=> k(k + 1)(k + 2) \(⋮\)2.3 = 6
=> 8k(k + 1)(k + 2) \(⋮\)8.6 = 48
Vậy n3 + 6n2 + 8n \(⋮\)48 \(\forall\)n là số chẵn
1. \(\left(2x-1\right)^3+\left(x+2\right)^3=\left(3x+1\right)^3\)
\(\Rightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8=27x^3+27x^2+9x+1\)
\(\Rightarrow-18x^3-33x^2+9x+6=0\)\(\Rightarrow\left(x+2\right)\left(-18x^2+3x+3\right)=0\)
\(\Rightarrow\left(x+2\right)\left(2x-1\right)\left(-9x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2};x=-\frac{1}{3}\end{cases}}\)
Vậy \(x=-2;x=\frac{1}{2};x=-\frac{1}{3}\)
2. \(\frac{x-1988}{15}+\frac{x-1969}{17}+\frac{x-1946}{19}+\frac{x-1919}{21}=10\)
\(\Rightarrow\left(\frac{x-1988}{15}-1\right)+\left(\frac{x-1969}{17}-2\right)+\left(\frac{x-1946}{19}-3\right)+\left(\frac{x-1919}{21}-4\right)=0\)
\(\Rightarrow\frac{x-2003}{15}+\frac{x-2003}{17}+\frac{x-2003}{19}+\frac{x-2003}{21}=0\)
\(\Rightarrow x-2003=0\)do \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)
Vậy \(x=2003\)
3. Đặt \(\hept{\begin{cases}2009-x=a\\x-2010=b\end{cases}}\)
\(\Rightarrow\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Rightarrow49a^2+49ab+49b^2=19a^2-19ab+19b^2\)
\(\Rightarrow30a^2+68ab+30b^2=0\Rightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5a=-3b\\3a=-5b\end{cases}}\)
Với \(5a=-3b\Rightarrow5\left(2009-x\right)=-3\left(x-2010\right)\)
\(\Rightarrow-2x=-4015\Rightarrow x=\frac{4015}{2}\)
Với \(3a=-5b\Rightarrow3\left(2009-x\right)=-5\left(x-2010\right)\)
\(\Rightarrow2x=4023\Rightarrow x=\frac{4023}{2}\)
Vậy \(x=\frac{4023}{2}\)hoặc \(x=\frac{4015}{2}\)
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}+...+\frac{x+2010}{1}=\left(-2010\right)\)
\(\Rightarrow\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+2}{2009}+1\right)+...+\left(\frac{x+2010}{1}+1\right)=-2010+2010\)
\(\Rightarrow\frac{x+2011}{2010}+\frac{x+2011}{2009}+...+\frac{x+2011}{1}=0\)
\(\Rightarrow\left(x+2011\right)\left(1+\frac{1}{2}+...+\frac{1}{2009}+\frac{1}{2010}\right)=0\)
\(\Rightarrow x+2011=0\Leftrightarrow x=-2011\)
\(-x^2+4x-5\)
\(=\left(-x+4x-4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vì -1<0
Nên \(-x^2+4x-5< 0\) với mọi x
a ,\(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮6\)
Vì a(a+1) là 2 số nguyên liên tiếp nên chia hết cho 2
Vì a (a+1)(a+2) là 3 số nguyên liên tiêp nên chia hết cho 3
Mà 2 và 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow a\left(a+1\right)\left(a+2\right)⋮6\) hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\) (đpcm)
b,\(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
\(\Leftrightarrow2a^2-3a-2a^2-2a⋮5\)
\(\Leftrightarrow-5a⋮5\) (đúng)
Vậy \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
c,\(x^2+2x+2>0\forall x\)
Ta có \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
Vậy \(x^2+2x+2>0\forall x\)
d,\(x^2-x+1>0\forall x\)
Ta có: \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy \(x^2-x+1>0\forall x\)
e,\(-x^2+4x-5< 0\forall x\)
Ta có \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)
Vậy \(-x^2+4x-5< 0\forall x\)
1, a, = (3x+15-x+7 )( 3x+15+x-7)
= ( 2x +22)( 4x+8)
=8( x+11)( x+2)
b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)
=(x-9y)(x-y)
2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)
b,
Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm).
Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)