Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2008}+\dfrac{x+2}{2007}+\dfrac{x+3}{2006}=\dfrac{x+4}{2005}+\dfrac{x+5}{2004}+\dfrac{x+6}{2003}\)
⇔\(\dfrac{x+1}{2008}+1+\dfrac{x+2}{2007}+1+\dfrac{x+3}{2006}+1=\dfrac{x+4}{2005}+1+\dfrac{x+5}{2004}+1+\dfrac{x+6}{2003}+1\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}=\dfrac{x+2009}{2005}+\dfrac{x+2009}{2004}+\dfrac{x+2009}{2003}\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}-\dfrac{x+2009}{2005}-\dfrac{x+2009}{2004}-\dfrac{x+2009}{2003}=0\)
⇔ \(\left(x+2009\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}-\dfrac{1}{2005}-\dfrac{1}{2004}-\dfrac{1}{2003}\right)=0\)
⇔ x+2009=0
⇔ x=-2009
vậy x=-2009 là nghiệm của pt
a) ( x2 + x )2 + 4( x2 + x ) = 12
<=> ( x2 + x )2 + 4( x2 + x ) + 4 - 16 = 0
<=> ( x2 + x + 2)2 - 16 = 0
<=> ( x2 + x + 2 + 4)( x2 + x + 2 - 4) = 0
<=> ( x2 + x + 6 )( x2 + x - 2) = 0
Do : x2 + x + 6
= x2 + 2.\(\dfrac{1}{2}x+\dfrac{1}{4}+6-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\) ≥ \(\dfrac{23}{4}\) > 0 ∀x
=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1) + 2( x - 1) = 0
<=> ( x - 1)( x + 2 ) = 0
<=> x = 1 hoặc : x = - 2
KL.....
b) Kuroba kaito làm rùi nhé
\(\frac{x-3}{2011}+\frac{x-5}{2009}+\frac{x-7}{2007}+\frac{x-9}{2005}=4\)
\(\Leftrightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-7}{2007}-1\right)+\left(\frac{x-9}{2005}-1\right)=0\)
\(\Leftrightarrow\frac{x-2014}{2011}+\frac{x-2014}{2009}+\frac{x-2014}{2007}+\frac{x-2014}{2005}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2009}+\frac{1}{2007}+\frac{1}{2005}\right)=0\)
|________________A________________|
Do A > 0
nên x - 2014 = 0
<=> x = 2014
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)
\(\Leftrightarrow\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)
\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)
\(\Rightarrow x+2010=0\)
\(\Rightarrow x=-2010\)
Vậy pt có nghiệm duy nhất \(x=-2010\)
ta có (x+1/2009 +1) + ( x+3/2007 + 1)- (x+5/2005 +1) - (x+7/1993 + 1) = 0
=>(x +100/ 2009) + (x+100/2007) - (x+100/2005)-(x+100/1993)
=> (x +100) * (1/2009 + 1/2007+ 1/2005 + 1/1993) = 0
=> x = -100
Bạn cứ tinh ý để ý đến phần tử và mẫu cộng lại bằng 100. Khi bạn bỏ phần x + 100 ra thì còn lại như trên. Sau đó lược bỏ còn lại x = -100
Mạn phép mk không chép đề , mk làm luôn nhé
\(\dfrac{x+1}{2009}+1+\dfrac{x+3}{2007}+1=\dfrac{x+5}{2005}+1+\dfrac{x+7}{1993}+1\)
⇔ \(\dfrac{x+2010}{2009}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2005}-\dfrac{x+2010}{1993}=0\)
⇔( x + 2010 )\(\left(\dfrac{1}{2009}+\dfrac{1}{2007}-\dfrac{1}{2005}-\dfrac{1}{1993}\right)=0\)
Ta thấy : \(\dfrac{1}{2009}< \dfrac{1}{2007}< \dfrac{1}{2005}< \dfrac{1}{1993}\)
⇒ \(\dfrac{1}{2009}+\dfrac{1}{2007}-\dfrac{1}{2005}-\dfrac{1}{1993}< 0\)
⇒ x + 2010 = 0
⇒ x = -2010
KL....
a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)
\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow6x+2x=24+1\)
\(\Leftrightarrow8x=25\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)
b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)
\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)
\(\Leftrightarrow17\left(x-1\right)=12\)
\(\Leftrightarrow17x-17=12\)
\(17x=12+17\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)
c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)
\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)
\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)
\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)
\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\)
\(\Leftrightarrow-x=-2003\)
\(\Leftrightarrow x=2003\)
Vậy phương trình có một nghiệm là x = 2003
a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)
\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow4x+2x+2x=1+24\)
\(\Leftrightarrow8x=25\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
Vậy S={\(\dfrac{25}{8}\)}
b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)
\(\Leftrightarrow6x-6+3x-3=12-8x+8\)
\(\Leftrightarrow6x+3x+8x=6+3+12+8\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy S={\(\dfrac{29}{17}\)}
\(\Leftrightarrow\dfrac{x}{2005}+1+\dfrac{x-1}{2006}+1=\dfrac{x-2}{2007}+1-1+1\)
\(\Leftrightarrow\dfrac{x+2005}{2005}+\dfrac{x+2005}{2006}=\dfrac{x+2005}{2007}\)
\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}\right)=0\)
\(\Leftrightarrow x+2005=0\) (vì \(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}\ne0\))
\(\Leftrightarrow x=-2005\)
\(\dfrac{x}{2005}+\dfrac{x-1}{2006}=\dfrac{x-2}{2007}-1\)
\(\Leftrightarrow\dfrac{x+2005}{2005}+\dfrac{x+2005}{2006}-\dfrac{x+2005}{2007}=0\)
\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}\right)=0\)
\(\Leftrightarrow x=-2005\).