Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x + 3 = 0
\(\Leftrightarrow x=-3\)
Vậy phương trình có tập nghiệm \(S=\left\{-3\right\}\)
b) 2x - 1 = 0
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
c) x - 1 = 5x - 3
\(\Leftrightarrow x-5x=-3+1\)
\(\Leftrightarrow-4x=-2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
\(4+2x\left(2x+4\right)=-x\)
\(4+2x.2x+8x=-x\)
\(4x+8x+x=-4\)
\(13x=-4\)
\(x=-\frac{4}{13}\)
Vậy pt có nghiệm là { -4/13 }
a) 2x + 1 = 15 - 5x
<=> 2x + 5x = 15 - 1
<=> 7x = 14
<=> x = 2
Vậy phương trình có nghiệm duy nhất là x = 2
b) 3x - 2 = 2x + 5
<=> 3x - 2x = 5 + 2
<=> x = 7
Vậy phương trình có nghiệm duy nhất là x = 7
c) x ( 2x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy _______
d) 7 ( x - 2 ) = 5 ( 3x + 1 )
<=> 7x - 14 = 15x + 5
<=> 7x - 15x = 5 + 14
<=> -8x = 19
<=> \(x=-\frac{19}{8}\)
Vậy ______
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)
\(\text{a) }\left(x^2+x\right)^2+4\left(x^2+x\right)=12\\ \Leftrightarrow\text{Đặt }x^2+x=y\\ \Leftrightarrow y^2+4y=12\\ \Leftrightarrow y^2+6y-2y-12=0\\ \Leftrightarrow\left(y^2+6y\right)-\left(2y+12\right)=0\\ \Leftrightarrow y\left(y+6\right)-2\left(y+6\right)=0\\ \Leftrightarrow\left(y+6\right)\left(y-2\right)=0\\ \Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{23}{4}\right)\left(x^2+2x-x-2\right)=0\\ \Leftrightarrow\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{23}{4}\right]\left[\left(x^2+2x\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\right]\left[x\left(x+2\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\left(Vì\text{ }\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\ \text{Vậy }S=\left\{1;-2\right\}\\ \)
\(\text{b) }6x^4-5x^3-38x^2-5x+6=0\\ \Leftrightarrow x^2\left(6x^2-5x-38-\dfrac{5}{x}+\dfrac{6}{x^2}\right)=0\\ \Leftrightarrow x^2\left[\left(6x^2+12+\dfrac{6}{x^2}\right)-\left(5x+\dfrac{5}{x}\right)-50\right]=0\\ \Leftrightarrow x^2\left[6\left(x^2+2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-50\right]=0\\ \Leftrightarrow x^2\left[6\left(x+\dfrac{1}{x}\right)^2-5\left(x+\dfrac{1}{x}\right)-50\right]=0\\ \text{Đặt }x+\dfrac{1}{x}=y\\ \Leftrightarrow x^2\left(6y^2-5y-50\right)=0\\ \Leftrightarrow x^2\left(6y^2-20y+15y-50\right)=0\\ \Leftrightarrow x^2\left[\left(6y^2-20y\right)+\left(15y-50\right)\right]=0\\ \Leftrightarrow x^2\left[2y\left(3y-10\right)+5\left(3y-10\right)\right]=0\\ \Leftrightarrow x^2\left(2y+5\right)\left(3y-10\right)=0\\ \Leftrightarrow x^2\left(2x+\dfrac{2}{x}+5\right)\left(3x+\dfrac{3}{x}-10\right)=0\\ \Leftrightarrow\left(2x^2+2+5x\right)\left(3x^2+3-10x\right)=0\\ \Leftrightarrow\left(2x^2+4x+x+2\right)\left(3x^2-9x-x+3\right)=0\\ \Leftrightarrow\left[\left(2x^2+4x\right)+\left(x+2\right)\right]\left[\left(3x^2-9x\right)-\left(x-3\right)\right]=0\\ \Leftrightarrow\left[2x\left(x+2\right)+\left(x+2\right)\right]\left[3x\left(x-3\right)-\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x+1\right)\left(x+2\right)\left(3x-1\right)\left(x-3\right)=0\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\3x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=-2\\3x=1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\\x=\dfrac{1}{3}\\x=3\end{matrix}\right.\\ \text{Vậy }S=\left\{-\dfrac{1}{2};-2;\dfrac{1}{3};3\right\}\)
\(2.\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\\ \Leftrightarrow x^2+5x+3x+15+3x^2-4x+9x-12=0\\ \Leftrightarrow x^2+3x^2+5x+3x-4x+9x+15-12=0\\\Leftrightarrow 4x^2+13x+3=0\\\Leftrightarrow 4\left(x^2+\frac{13}{4}x+\frac{3}{4}\right)=0\\\Leftrightarrow x^2+\frac{13}{4}x+\frac{3}{4}=0\\ \Leftrightarrow x^2+\frac{1}{4}x+3x+\frac{3}{4}=0\\\Leftrightarrow x\left(x+\frac{1}{4}\right)+3\left(x+\frac{1}{4}\right)=0\\\Leftrightarrow \left(x+3\right)\left(x+\frac{1}{4}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+3=0\\x+\frac{1}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là: \(S=\left\{-3;-\frac{1}{4}\right\}\)
\(3.\left(x+6\right)\left(3x-1\right)+x+6=0\\ \Leftrightarrow3x^2-x+18x-6+x+6=0\\ \Leftrightarrow3x^2+18x=0\\ \Leftrightarrow3x\left(x+6\right)=0\\\Leftrightarrow \left[{}\begin{matrix}3x=0\\x+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{0;-6\right\}\)
A. \(\left(x+6\right)\left(3x-1\right)+x+6=0\)
\(\Leftrightarrow\left(x+6\right)\left(3x-1+1\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot3x=0\)
\(\Rightarrow\left[{}\begin{matrix}x+6=0\\3x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
Vậy.................................
B. \(\left(x+4\right)\left(5x+9\right)-x-4=0\)
\(\Leftrightarrow\left(x+4\right)\left(5x+9\right)-\left(x+4\right)=0\\ \Leftrightarrow\left(x+4\right)\left(5x+9-1\right)=0\\ \Leftrightarrow\left(x+4\right)\left(5x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\5x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{-8}{5}\end{matrix}\right.\)
Vậy.......................................
thanks