K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)

Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu

mà 1>0

=>x + 2 > 0 <=> x > 2

\(\Rightarrow S=\left\{x|x>2\right\}\)

b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)

Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu

\(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)

\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)

c. Ta có bảng xét dấu:

x -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\)
x+1 - 0 + +
2x+1 - - 0 +
\(\dfrac{2x+1}{x+1}\) + \(//\) - 0 +

4 tháng 4 2018

Bổ xung câu c:

Vậy : \(-1< x\le\dfrac{-1}{2}\)

25 tháng 3 2018

a) ĐKXĐ: x khác 0

\(x+\dfrac{5}{x}>0\)

\(\Leftrightarrow x^2+5>0\) ( luôn đúng)

Vậy bất pt vô số nghiệm ( loại x = 0)

d)

\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)

\(\Leftrightarrow2x+2-4x+4>-15\)

\(\Leftrightarrow-2x>-21\)

\(\Leftrightarrow x< \dfrac{21}{2}\)

Vậy....................

25 tháng 3 2018

a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)

\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)

\(x^2+5>0\)

\(\Rightarrow x>0\)

d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)

\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)

\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)

\(\Leftrightarrow-x>-\dfrac{21}{2}\)

\(\Leftrightarrow x< \dfrac{21}{2}\)

8 tháng 4 2018

a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)

\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)

\(\Leftrightarrow-10x^2>5\)

\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)

Vậy bất phương trình đã cho vô nghiệm.

8 tháng 4 2018

h)

\(\dfrac{x+5}{x+7}-1>0\)

\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)

\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)

\(\Leftrightarrow\dfrac{-2}{x+7}>0\)

\(\Leftrightarrow x+7< 0\)

\(\Leftrightarrow x< -7\)

g)

\(\dfrac{4-x}{3x+5}\ge0\)

* TH1:

\(4-x\ge0\)\(3x+5>0\)

\(\Leftrightarrow x\le4\)\(x>\dfrac{-5}{3}\)

* TH2:

\(4-x\le0\)\(3x+5< 0\)

\(\Leftrightarrow x\ge4\)\(x< \dfrac{-5}{3}\) ( loại)

Vậy: \(-\dfrac{5}{3}< x\le4\)

Câu 1:

a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)

\(\Leftrightarrow12x-10x-4=21-9x\)

\(\Leftrightarrow11x=25\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)

c) \(\left|3x\right|=4x+8\) (1)

Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)

\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)

Với \(x\ge0\), phương trình (1) có dạng:

\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)

(không thoả mãn điều kiện) \(\rightarrow\) loại

Với \(x< 0\), phương trình (1) có dạng:

\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)

(thoả mãn điều kiện) \(\rightarrow\) nhận

Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)

Câu 2:

\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)

\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)

\(\Leftrightarrow-3x\ge-6\)

\(\Leftrightarrow x\le2\)

Vậy bất phương trình đã cho có nghiệm \(x\le2\)

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

7 tháng 7 2018

a) \(x^2-4x+3>0\)

\(\Leftrightarrow x^2-x-3x+3>0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)>0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)>0\)

Lập bảng xét dấu :

x x-3 x-1 (x-3)(x-1) 1 3 - 0 - + 0 - + + + - +

Dựa vào bảng xét dấu ta có : \(x< 1\) hoặc \(x>3\)

b) \(x^2-2x+3x-6< 0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)< 0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\)

Lập bảng xét dấu :

x x+3 x-2 (x+3)(x-2) -3 2 0 0 - - + - + + + - +

Dựa vào bảng xét dấu ta có : \(-3< x< 2\)

7 tháng 7 2018

phần b bn sai đề zui

21 tháng 12 2018

GIÚP MÌNH VỚI MAI LÀ NỘP BÀI RỒI

23 tháng 12 2018

câu a) và b) thì sử dụng tính chất nếu tích =0 thì có ít nhất 1 thừa số =0

c)4x^2+4x+1=0

(2x+1)^2=0

2x+1=0

x=-1/2

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Lời giải:

ĐK: \(x\neq \pm 2;x\neq 0\)

a) Ta có:

\(A=\left(\frac{4x}{2+x}+\frac{8x^2}{(2-x)(2+x)}\right):\left(\frac{x-1}{x(x-2)}-\frac{2}{x}\right)\)

\(=\frac{4x(2-x)+8x^2}{(2-x)(2+x)}:\frac{(x-1)-2(x-2)}{x(x-2)}\)

\(=\frac{8x+4x^2}{(2-x)(2+x)}:\frac{-x+3}{x(x-2)}\)

\(=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x(x-2)}{3-x}\)

\(=\frac{4x}{2-x}.\frac{x(2-x)}{x-3}=\frac{4x^2}{x-3}\)

b) Để \(A>0\) thì \(\frac{4x^2}{x-3}>0\)

\(4x^2>0, \forall x\neq 0\), do đó để \(\frac{4x^2}{x-3}>0\Rightarrow x-3>0\Rightarrow x>3\)

Vậy $x>3$

20 tháng 6 2018

a,\(\Leftrightarrow9x^2+4x-3-9x^2-12x-4>0\)

\(\Leftrightarrow-8x-7>0\)

\(\Leftrightarrow-8x>7\)\(\Leftrightarrow x< -\dfrac{7}{8}\)

0 -7/8 (

20 tháng 6 2018

\(b,\Leftrightarrow\dfrac{4x^2-2\left(2x^2+3x\right)}{4}< \dfrac{x-1}{4}\)

\(\Leftrightarrow4x^2-4x^2-6x< x-1\)

\(\Leftrightarrow-6x-x< x-1\)

\(\Leftrightarrow-7x< -1\Leftrightarrow x>\dfrac{1}{7}\)

Vậy....

1/7 0 (

31 tháng 3 2018

Ôn tập cuối năm phần số học

ảnh k đc rõ mấy, mong bạn thông cảm :)

31 tháng 3 2018

Câu a và câu c bn kia làm rồi nên mk làm câu b thôi nhé....

b) y2 + 4x + 2y - 2x+1 + 2 = 0

\(\Leftrightarrow\) (y2 + 2y + 1) + 4x - 2x.2 + 1 = 0

\(\Leftrightarrow\) (y + 1)2 + [(2x)2 - 2.2x.1 + 1] = 0

\(\Leftrightarrow\) (y + 1)2 + (2x - 1)2 = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\2^x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)

Vậy...................