Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)
\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)
\(\Leftrightarrow-10x^2>5\)
\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)
Vậy bất phương trình đã cho vô nghiệm.
h)
\(\dfrac{x+5}{x+7}-1>0\)
\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)
\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-2}{x+7}>0\)
\(\Leftrightarrow x+7< 0\)
\(\Leftrightarrow x< -7\)
g)
\(\dfrac{4-x}{3x+5}\ge0\)
* TH1:
\(4-x\ge0\) và \(3x+5>0\)
\(\Leftrightarrow x\le4\) và \(x>\dfrac{-5}{3}\)
* TH2:
\(4-x\le0\) và \(3x+5< 0\)
\(\Leftrightarrow x\ge4\) và \(x< \dfrac{-5}{3}\) ( loại)
Vậy: \(-\dfrac{5}{3}< x\le4\)
Câu 1:
a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)
\(\Leftrightarrow12x-10x-4=21-9x\)
\(\Leftrightarrow11x=25\)
\(\Leftrightarrow x=\dfrac{25}{11}\)
b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)
c) \(\left|3x\right|=4x+8\) (1)
Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)
\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)
Với \(x\ge0\), phương trình (1) có dạng:
\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)
(không thoả mãn điều kiện) \(\rightarrow\) loại
Với \(x< 0\), phương trình (1) có dạng:
\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)
(thoả mãn điều kiện) \(\rightarrow\) nhận
Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)
Câu 2:
\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
Vậy bất phương trình đã cho có nghiệm \(x\le2\)
a: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
hay x=1/7
b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
=>12x+10=6x+5
=>6x=-5
hay x=-5/6
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
a) \(x^2-4x+3>0\)
\(\Leftrightarrow x^2-x-3x+3>0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)>0\)
Lập bảng xét dấu :
x x-3 x-1 (x-3)(x-1) 1 3 - 0 - + 0 - + + + - +
Dựa vào bảng xét dấu ta có : \(x< 1\) hoặc \(x>3\)
b) \(x^2-2x+3x-6< 0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)< 0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\)
Lập bảng xét dấu :
x x+3 x-2 (x+3)(x-2) -3 2 0 0 - - + - + + + - +
Dựa vào bảng xét dấu ta có : \(-3< x< 2\)
Lời giải:
ĐK: \(x\neq \pm 2;x\neq 0\)
a) Ta có:
\(A=\left(\frac{4x}{2+x}+\frac{8x^2}{(2-x)(2+x)}\right):\left(\frac{x-1}{x(x-2)}-\frac{2}{x}\right)\)
\(=\frac{4x(2-x)+8x^2}{(2-x)(2+x)}:\frac{(x-1)-2(x-2)}{x(x-2)}\)
\(=\frac{8x+4x^2}{(2-x)(2+x)}:\frac{-x+3}{x(x-2)}\)
\(=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x(x-2)}{3-x}\)
\(=\frac{4x}{2-x}.\frac{x(2-x)}{x-3}=\frac{4x^2}{x-3}\)
b) Để \(A>0\) thì \(\frac{4x^2}{x-3}>0\)
Mà \(4x^2>0, \forall x\neq 0\), do đó để \(\frac{4x^2}{x-3}>0\Rightarrow x-3>0\Rightarrow x>3\)
Vậy $x>3$
a,\(\Leftrightarrow9x^2+4x-3-9x^2-12x-4>0\)
\(\Leftrightarrow-8x-7>0\)
\(\Leftrightarrow-8x>7\)\(\Leftrightarrow x< -\dfrac{7}{8}\)
0 -7/8 (
\(b,\Leftrightarrow\dfrac{4x^2-2\left(2x^2+3x\right)}{4}< \dfrac{x-1}{4}\)
\(\Leftrightarrow4x^2-4x^2-6x< x-1\)
\(\Leftrightarrow-6x-x< x-1\)
\(\Leftrightarrow-7x< -1\Leftrightarrow x>\dfrac{1}{7}\)
Vậy....
1/7 0 (
Câu a và câu c bn kia làm rồi nên mk làm câu b thôi nhé....
b) y2 + 4x + 2y - 2x+1 + 2 = 0
\(\Leftrightarrow\) (y2 + 2y + 1) + 4x - 2x.2 + 1 = 0
\(\Leftrightarrow\) (y + 1)2 + [(2x)2 - 2.2x.1 + 1] = 0
\(\Leftrightarrow\) (y + 1)2 + (2x - 1)2 = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\2^x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)
Vậy...................
a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)
Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu
mà 1>0
=>x + 2 > 0 <=> x > 2
\(\Rightarrow S=\left\{x|x>2\right\}\)
b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)
Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu
mà \(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)
\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)
c. Ta có bảng xét dấu:
Bổ xung câu c:
Vậy : \(-1< x\le\dfrac{-1}{2}\)