K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

ĐK: \(x\ge-1\)

pt <=> \(\left(14\sqrt{x+35}-84\right)+\left(6\sqrt{x+1}-\sqrt{x^2+36x+35}\right)=0\)

<=> \(14\left(\sqrt{x+35}-6\right)+\sqrt{x+1}\left(6-\sqrt{x+35}\right)=0\)

<=> \(\left(\sqrt{x+35}-6\right)\left(11-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x+35}-6=0\\11-\sqrt{x+1}=0\end{cases}}\)Em làm tiếp nhé!

Cau 1: 

a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)

c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)

TH1: c>0

\(C=\dfrac{c+1}{c-1}\)

TH2: c<0

\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)

11 tháng 10 2017

Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)

Dấu \(=\)xảy ra khi \(AB\ge0\)

11 tháng 10 2017

dat \(\sqrt{x-1}\) = t

ta có: \(\sqrt{x+3+4t}\)\(\sqrt{x+8-6t}\)= 5

     x + 3 + 4t + x + 8 - 6t = 25

   2x - 2t = 14 ( chia cả 2 vế cho 2)

   x - t = 7

   t = x - 7

  thay t = \(\sqrt{x}-1\)vào ta được:

 x - 7 = \(\sqrt{x-1}\)

( x - 7 )2 = x - 1

x2 -14x + 49 = x - 1

x- 15x + 50 = 0

​k biết đúng hay k

1 tháng 9 2019

Em làm bừa thôi, mới học dạng này .

ĐK: \(1\le x\le7\)

Đặt \(\sqrt{6}\ge a=\sqrt{7-x}\ge0;\sqrt{6}\ge b=\sqrt{x-1}\ge0\)

PT<=>\(b^2+2a=2b+ab\left(1\right)\)

(1) \(\Leftrightarrow\left(a-b\right)\left(2-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\b=2\end{cases}}\). Nếu a = b thì \(\sqrt{7-x}=\sqrt{x-1}\Leftrightarrow7-x=x-1\Leftrightarrow x=4\) (TM)

Nếu b = 2 thì \(\sqrt{x-1}=2\Leftrightarrow x=5\left(TM\right)\)

Vậy...

11 tháng 1 2019

b/ Đặt \(\sqrt{x^2+1}=a\ge0\)

\(\Rightarrow a^2+3x=\left(x+3\right)a\)

\(\Leftrightarrow\left(3-a\right)\left(x-a\right)=0\)

11 tháng 1 2019

a/ Dựa vô TXĐ thì thấy \(x< 2\)

\(\Rightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}-x>\sqrt{6}-2>0\)

Vậy vô nghiệm