K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

\(a,x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

Vậy: \(S=\left\{x|x>3\right\}\)

\(b,x^2-8x+16< 0\)

\(\Leftrightarrow\left(x-4\right)^2< 0\)

Vì: \(\left(x-4\right)^2\ge0\)

=> vô lí=> ko có giá trị của x thỏa mãn

Vậy : \(S=\varnothing\)

=.= hok tốt!!

3 tháng 9 2018

giải giúp mik vs các bn ơi

3 tháng 9 2018

\(x^2-8x+16< 0\)

\(\Leftrightarrow\left(x-4\right)^2< 0\)

\(\Rightarrow\)vô lí 

3 tháng 9 2018

ta có : \(x^2-8x+16=\left(x-4\right)^2\ge0\)

\(\Rightarrow\) bất phương trình \(x^2-8x+16< 0\) vô nghiệm

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

7 tháng 4 2015

a) -1<X<-1/2

b) X<-1.2<X

a,\(6x^2+x-5=0\)

\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)

Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)

Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)

b, \(3x^2+4x+2=0\)

\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)

Vì \(\Delta< 0\)nên pt vô nghiệm 

c, \(x^2-8x+16=0\)

\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)

Vì \(\Delta=0\)nên pt có nghiệm kép 

\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)

8 tháng 4 2020

a) \(6x^2+x-5=0\)

Ta có : \(\Delta=1+4.6.5=121>0\)

\(\Rightarrow\sqrt{\Delta}=11\)

Phương trình có hai nghiệm :

\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)

\(x_2=\frac{-1-11}{2.6}=-1\)

b) \(3x^2+4x+2=0\)

Ta có : \(\Delta=4^2-4.3.2=-8< 0\)

Vậy phương trình vô nghiệm

c) \(x^2-8x+16=0\)

Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)

Phương trình có nghiệm kép :

\(x_1=x_2=\frac{8}{2}=-4\)

29 tháng 10 2020

a) \(\sqrt{x^2-6x+9}=3\)

⇔ \(\sqrt{\left(x-3\right)^2}=3\)

⇔ \(\left|x-3\right|=3\)

⇔ \(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)

b) \(\sqrt{x^2-8x+16}=x+2\)

⇔ \(\sqrt{\left(x-4\right)^2}=x+2\)

⇔ \(\left|x-4\right|=x+2\)

⇔ \(\orbr{\begin{cases}x-4=x+2\left(x\ge4\right)\\4-x=x+2\left(x< 4\right)\end{cases}\Leftrightarrow}x=1\)

c) \(\sqrt{x^2+6x+9}=3x-6\)

⇔ \(\sqrt{\left(x+3\right)^2}=3x-6\)

⇔ \(\left|x-3\right|=3x-6\)

⇔ \(\orbr{\begin{cases}x-3=3x-6\left(x\ge3\right)\\3-x=3x-6\left(x< 3\right)\end{cases}}\Leftrightarrow x=\frac{9}{4}\)

d) \(\sqrt{x^2-4x+4}-2x+5=0\)

⇔ \(\sqrt{\left(x-2\right)^2}-2x+5=0\)

⇔ \(\left|x-2\right|-2x+5=0\)

⇔ \(\orbr{\begin{cases}x-2-2x+5=0\left(x\ge2\right)\\2-x-2x+5=0\left(x< 2\right)\end{cases}}\Leftrightarrow x=3\)

16 tháng 3 2017

a, x\(^2\) \(-\)4x\(-\)5<0

\(\Leftrightarrow\)x\(^2\) \(-\)4x+4 <9

\(\Leftrightarrow\) (x\(-\)2)\(^2\)<9

\(\Leftrightarrow\) \(|\) x \(-\)2 \(|\) < 3

\(\Leftrightarrow\)\(-\)3< x\(-\)2<3

\(\Leftrightarrow\) \(-\)1< x <5

Vậy nghiệm của bất phương trình là\(-\) 1< x <5.

b, 2x\(^2\)\(-\)6x+5 > 0

\(\Leftrightarrow\) 4x\(^2\)\(-\)12x+10 < 0

\(\Leftrightarrow\) (2x\(-\)3) \(^2\) +1 > 0.

Vì bất phương trình cuối nghiệm đúng với mọi x nên bất phương trình đã cho nghiệm đúng với mọi x hay có vô số nghiệm ,

16 tháng 3 2017

nhưng

10 tháng 8 2016

Ta có VT = (3x - 2)(2x+ x + 5)< 0 nên 3x-2<0 => x<2/3