Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sin a = \( {đối \over huyền}\) =3/5 => kề bằng 4 ( bạn tính theo pytago nha)
kẻ trục oxy sau đó lấy điểm A trên ox sao cho OA = 4, lấy B trên Oy sao cho OB = 3.
Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.
Ta có:
Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm
trong đó với , ta có:
Tương tự, ta có:
Cộng ba bất đẳng thức và , ta được:
Khi đó, ta chỉ cần chứng minh
Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau: (bất đẳng thức Cauchy cho ba số )
Hay
Mà đã được chứng minh ở câu nên luôn đúng với mọi
Dấu xảy ra
Vậy,
Bài này dễ , nhưng bạn phải dùng máy tính nha ...
Bạn thao tác trên máy Casio : SHIFT -> sin -> ( rồi điền 2/5 ) = . sẽ ra kết quả là : 23.57817848 xong tiếp tục bấm phím độ
là cái phím có chữ B . nó sẽ hiện ra kết quả là 23 độ 34 phút 41,44 giây . Vậy góc a = \(23^.34^'\)
Dựng góc nhọn a biết sin a =2/3. Đc vẽ bằng góc xOy
a: sin a=1/2
=>a=30 độ
b: cos a=2/3
=>\(a\simeq48^0\)
c: tan a=4/5
=>\(a\simeq39^0\)
d: \(cota=\dfrac{3}{4}\)
=>tan a=4/3
=>\(a\simeq53^0\)
45 60 a x A B C H K
a) Kẻ đường cao BK
Ta có:
\(\sin\widehat{A}=\frac{BK}{AB};\cos\widehat{A}=\frac{AK}{AB}\)
=> \(\sin\widehat{A}+\cos\widehat{A}=\frac{BK}{AB}+\frac{AK}{AB}=\frac{AK+BK}{AB}>\frac{AB}{AB}=1\)
b) Kẻ đường cao AH.
Đặt BH = x => HC = a - x.
+) Tam giác AHB vuông cân => AH = BH =x (1)
+) Tam giác AHC có \(\tan\widehat{ACH}=\frac{AH}{HC}\Rightarrow\tan60^o=\frac{AH}{a-x}\Rightarrow AH=\sqrt{3}\left(a-x\right)\) (2)
Từ (1) ; (2) => \(x=\sqrt{3}\left(a-x\right)\Rightarrow x=\frac{\sqrt{3}a}{1+\sqrt{3}}\)
=> \(AH=\frac{\sqrt{3}a}{1+\sqrt{3}}\)
=> \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.\frac{\sqrt{3}a}{1+\sqrt{3}}.a=\frac{3-\sqrt{3}}{4}a^2\)
góc a=41,81 độ