K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

27 tháng 3 2017

bài này có trong violympic ko nhỉ

10 tháng 12 2016

Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn

 

10 tháng 12 2016

1. Xét 32^9 và 18^13

ta có 32^9=(2^5)^9=2^45

18^13>16^13=(2^4)^13=2^52

vì 18^13>2^52>2^45 nên 18^13>32^9

2.

a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)

Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)

mà A có tcung là 5 nên A \(⋮\)5

A có tổng các cso là 9 nên A\(⋮\)9

vậy A \(⋮\)45

d, bn xem có sai đề ko nhé

3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)

x+y+z=1/2 hoặc -1/2

còn lai bn tự tính nhé

8 tháng 10 2017

bos tay

8 tháng 10 2017

Gọi 20 số tự nhiên trên 20 tấm bia lân lượt la: a1, a2,a3,..., a20. Khi ó ta có các tổng sau:

s1= a1

s2= a1+a2

s3=a1+a2+a3

.....

s20= a1+a2+...+a20

Trương hợp 1: Tồn tại một tổng chia hết cho 20 thi bai toán đã được chứng minh

Trương hợp 2: Không có tổng nào chia hết cho 20

                            Ta thấy khi chia một số cho 7 thì có tất cả 6 số dư từ 0 dến 6 mà có 7 tổng nên  tồn tại 2 tổng có cùng số dư suy ra hiệu   của 2 tổng đó chia hết cho 20  {( s5- s3 = a1+a2+..+a5) -(a1+a2+a3)= a4+a5}  

Vậy  có thể chọn ra một hay nhiêu tấm bia mà tổng các số trên dó chia hết cho 20

22 tháng 7 2018

Bài 4 :

Gọi các số đó là a,a+1,a+2,a+3.......,a+45

Ta có 

a+(a+1)+(a+2)+(a+3)+..........+(a+45)

46a+ (1+2+3+4+5+.........+45)

46a+1035

Ta thấy 46a chia hết cho 46 , 1035 không chia hết cho 46 

=> 46a +1035 không chia hết cho 46

Vậy 46 số tự nhiên liên tiếp không chia hết cho 46 

22 tháng 7 2018

Nếu n chia 5 dư 1, 3 thì n^2 chia 5 dư 1

=> n^2 + 4 chia hết cho 5

Nếu n chia 5 dư 2,4 thì n^2 chia 5 dư 4

=> n^2 + 1 chia hết cho 5

Nếu n chia hết cho 5

=> A chia hết cho 5

8 tháng 2 2020

sedfrgh

24 tháng 11 2016

b)

a=3n+1+3n-1=3n(3+1)-1=3n*4-1

Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}

=>{3n*4}E{2;8;15;29;36;...}

=>3nE{9;...} => nE{3;...}

b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1

Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}

=>{3N*5}E{0;6;13;27;34;...}

=>3NE{0;...}

=>NE{0;...}

=>đpcm(cj ko chắc cách cm này)