\(2xy^2+x+y+1=x^2+2y^2+xy\)

 

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

Ta có : \(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\left(1\right)\\\left(x+y\right)^2-2xy=325\left(2\right)\end{cases}}\)

Lấy (2) trừ (1) theo vế : \(\left(x+y\right)^2-2\left(x+y\right)=215\)

Đặt \(t=x+y\) thì ta có pt : \(t^2-2t-215=0\Leftrightarrow\orbr{\begin{cases}t=1+6\sqrt{6}\\t=1-6\sqrt{6}\end{cases}}\)

1. Nếu \(t=1+6\sqrt{6}\) thì thay vào (1) ta được \(\hept{\begin{cases}x+y=1+6\sqrt{6}\\xy=-54+6\sqrt{6}\end{cases}}\)

Tới đây ta được hệ phương trình đối xứng loại I , bạn tự giải.

2. Nếu \(t=1-6\sqrt{6}\) thì thay vào (1) được \(\hept{\begin{cases}x+y=1-6\sqrt{6}\\xy=-54-6\sqrt{6}\end{cases}}\) 

Ta cũng được hệ pt đối xứng loại I.

23 tháng 10 2016

hi tui khong biet tui moi hoc lop 7 thui !

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

8 tháng 11 2016

Giải bằng Tiếng Việt thím nhá =))

Giả sử cả 5 số a; b; c; d; e đều lẻ

=> a2; b2; c2; d2; e2 cũng đều lẻ

Ta đã biết số chính phương chia cho 8 chỉ có thể dư 0; 1 hoặc 4 nếu số chính phương đó thuộc N

Mà a2; b2; c2; d2; e2 lẻ nên cả 5 số này đều chia 8 dư 1

=> g2 = a2 + b2 + c2 + d2 + e2 chia 8 dư 5, không là số chính phương

Do đó, trong 5 số a; b; c; d; e; g tồn tại ít nhất 1 số chẵn

=> abcdeg chia hết cho 2 (đpcm)

8 tháng 11 2016

Đúng y như cách giải của t luôn :) 

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)Giải :Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)Xảy ra hai trường hợp \(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow...
Đọc tiếp

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Giải :

Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)

                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)

Xảy ra hai trường hợp 

\(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow x\left(x+3\right)\ge0\) 

\(\left(II\right)\hept{\begin{cases}x^2+3x\le0\\x^2+3x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\le0\\x\left(x+3\right)\le-2\end{cases}}}\Rightarrow x\left(x+3\right)\le-2\)

\(\Rightarrow\orbr{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\le-2\end{cases}}\)

+)  Với \(x\left(x+3\right)\ge0\)

=> \(\hept{\begin{cases}x\ge0\\x\ge-3\end{cases}}\)           hoặc                 \(\hept{\begin{cases}x\le0\\x\le-3\end{cases}}\)

=>  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\)

+)  Với  \(x\left(x+3\right)\le-2\)=> \(x^2+3x+2\le0\)  =>  \(\left(x+1\right)\left(x+2\right)\le0\)

=> \(\hept{\begin{cases}x+1\ge0\\x+2\le0\end{cases}}\)                          hoặc                \(\hept{\begin{cases}x+1\le0\\x+2\ge0\end{cases}}\)

=>  \(\hept{\begin{cases}x\ge-1\\x\le-2\end{cases}}\left(removed\right)\)     hoặc                \(\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\Rightarrow-2\le x\le-1\Rightarrow x\in\left\{-2;-1\right\}\)

Vậy với \(y^2\ge0\) thì  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\) hoặc  \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

Đẳng thức xảy ra <=> dấu bằng của các trường hợp được xét trên xảy ra    hay   

\(\hept{\begin{cases}y=0\\x\in\left\{0;-1;-2;-3\right\}\end{cases}}\)

 

P/s : Mấy pác xem hộ em :) , sai chỗ nào chỉ em với :V 

0
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)Ta...
Đọc tiếp

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Ta có:\(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

\(=-1\)

TH2: \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c\)

Ta có: \(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=2.2.2=8\)

Vậy .... ( ko bít ghi kiểu gì luôn -.- )

0
31 tháng 10 2016

Ta có

\(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\\\left(x+y\right)^2-2xy=325\end{cases}}\)

Lấy dưới trừ trên vế theo vế ta được

(x + y)2 - 2(x + y) = 215

\(\Leftrightarrow\orbr{\begin{cases}x+y=1+6\sqrt{6}\\x+y=1-6\sqrt{6}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}xy=6\sqrt{6}-54\\xy=-6\sqrt{6}-54\end{cases}}\)

Ta lại có

31 tháng 10 2016

Ta lại có 

x3 - y3 = (x - y)(x2 + xy + y2) = 

\(\sqrt{\left(x+y\right)^2-4xy}\left(x^2+xy+y^2\right)\)

Giờ chỉ việc thế số vô là có đáp án nhé

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn