Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây nè bạn CMR: (a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2? | Yahoo Hỏi & Đáp
Ta có : (a2 + b2 ) . ( c2 + d2 )
= a2c2 + b2c2 + a2d2 + b2d2
= (a2c2 + 2abcd + b2d2) + (a2d2 - 2adbc + b2c2)
= (ac + bd)2 + (ad - bc)2
Vậy (a2 + b2 ) . ( c2 + d2 ) = ( ac + bd )2 + ( ad - bc )2 (đpcm)
VP=(a^2)(c^2)+2abcd+(b^2)(d^2)+
+(a^2)(d^2)-2abcd+(b^2)(c^2)
=a^2(c^2+d^2)+b^2(d^2+c^2)
=(a^2+b^2)(c^2+d^2)=VT
a: \(=a^2+b^2+c^2+2ab+2bc+2ac-a^2-2ab-b^2-c^2=2bc+2ac\)
b: \(VT=a^2c^2+b^2d^2+2abcd+a^2d^2-2abcd+b^2c^2\)
\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2c^2+b^2d^2-ac^2-2abcd-b^2d^2-a^2d^2+2abcd-b^2c^2=0\)
=>dpcm
VT có:
(ac+bd)^2=ac^2+2acbd+bd^2
(ad-bc)^2=ad^2-2adbc+bc^2
Suy ra (ac+bd)^2+(ad-bc)^2=ac^2+ad^2+bc^2+bd^2
VP có:
(a^2+b^2)(c^2+d^2)=a^2.c^2+a^2.d^2+b^2.c^2+b^2.d^2=ac^2+ad^2+bc^2+bd^2
Do đó: (ac+bd)^2+(ad-bc)^2=(a^2+b^2)(c^2+d^2)