K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

a) \(3x^2-3y^2-12x+12y\)

\(=\left(3x^2-3y^2\right)-\left(12x-12y\right)\)

\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-3y-12\right)\)

\(=\left(x-y\right).3.\left(x-y-4\right)\)

b) \(4x^3+4xy^2+8x^2y-16x\)

\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)

\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)

28 tháng 11 2017

c)    \(x^4-5x^2+4\)

\(=x^4-x^2-4x^2+4\)

\(=\left(x^4-x^2\right)-\left(4x^2-4\right)\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)

\(=\left(x^2-4\right)\left(x^2-1\right)\) 

\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

31 tháng 10 2017

Bài 1:

a)3x2 - 3y2 - 12x +12y=3(x2-y2)-12(x-y)=3(x-y)(x+y)-12(x-y)=3(x-y)(x+y-4)

b) 4x3 + 4xy2 + 8x2y - 16x=4x(x-4)+4xy(y+2x)=4x(x-4+y2+2xy)

c) x4 - 5x2 + 4=x4-x2-4x2+4=x2(x2-1)-4(x2-1)=(x2-1)(x2-4)=(x-1)(x+1)(x-2)(x+2)

d) x3 - 2x2 + 6x - 5=x3-x2-(x2-6x+5)=x2(x-1)-(x-1)(x-5)=(x-1)(x2-x+5)

e) x2 - 4x +3=x2-x-3x+3=x(x-1)-3(x-1)=(x-1)(x-3)

f ) 2x2 + 3x - 5=2x2-2+3x-3=2(x2-1)+3(x-1)=2(x-1)(x+1)+3(x-1)=(x-1)(2x+1)

26 tháng 12 2016

Bạn tự phân tích nhân tử cái biểu thức A thành: 

\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

a) \(n^2\ge0\Rightarrow n^2+1\ge1>0\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)=0\)<=> n-1=0 hoặc n=0 hoặc n+1=0

<=>n=1 hoặc n=0 hoặc n=-1

Vậy A=0 khi \(n\in\left\{-1;0;1\right\}\)

b) Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên trong tích này có ít nhất 1 thừa số chia hết chia hết cho 2 và 1 thừa số chia hết cho 3 (1)

Xét:

  • \(n=5k\left(k\in Z\right)\) =>\(A=\left(5k-1\right)5k\left(5k+1\right)\left(25k^2+1\right)⋮5\)
  • \(n=5k+1\)

=>\(A=\left(5k+1-1\right)\left(5k+1\right)\left(5k+1+1\right)\left[\left(5k+1\right)^2+1\right]\)

\(=5k\left(5k+1\right)\left(5k+2\right)\left[\left(5k+1\right)^2+1\right]⋮5\)

  • \(n=5k+2\)

=>\(A=\left(5k+2-1\right)\left(5k+2\right)\left(5k+2+1\right)\left[\left(5k+2\right)^2+1\right]\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+4+1\right)\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+5\right)\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)5\left(5k^2+4k+1\right)⋮5\)

  • n = 5k + 3

=>\(A=\left(5k+3-1\right)\left(5k+3\right)\left(5k+3+1\right)\left[\left(5k+3\right)^2+1\right]\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+9+1\right)\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+10\right)\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)5\left(5k^2+6k+2\right)⋮5\)

  • n = 5k + 4

=>\(A=\left(5k+4-1\right)\left(5k+4\right)\left(5k+4+1\right)\left[\left(5k+4\right)^2+1\right]\)

\(=\left(5k+3\right)\left(5k+4\right)\left(5k+5\right)\left[\left(5k+4\right)^2+1\right]\)

\(=\left(5k+3\right)\left(5k+4\right)5\left(k+1\right)\left[\left(5k+4\right)^2+1\right]⋮5\)

Vậy A chia hết cho 5 với mọi n thuộc Z (2)

Từ (1) và (2) và 2;3;5 là các số nguyên tố đôi một cùng nhau => A chia hết cho 2.3.5=30 (đpcm)

8 tháng 1 2017

cảm ơn ạ

24 tháng 7 2016

1)   \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)

\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)