K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Câu 1/     \(A=1+7+7^2+7^3+7^4+7^5\)       Nhân hai vế với 7 được :

\(7A=7+7^2+7^3+7^4+7^5+7^6\)   Do đó : \(6A=7^6-1\)  (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)

Suy ra :  \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)

(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8

Câu 2/  Chứng tỏ :  (2n + 5) chia hết cho (n + 1)  .Câu này đề sai .Khi n = 1 đã sai rồi . 

Câu 3 : Giải tương tự câu 1

24 tháng 8 2017

a) (x-14):2=24-3

(x-14):2 = 13

x-14 = 13.2

x-14 = 26

x = 26 + 14

x = 40

b) x572 = x <=> x = 1 hoặc 0 

24 tháng 8 2017

a, b làm như trên nha, còn mấy bìa còn lại :

 M=1+2+22+...+211 

M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)

M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)

M = 63 + 26.63

M = 63 ( 1+ 26)

M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9

S=3 + 32 +33 +.....+ 39

S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)

S= 3. 13 + 3^4.13 + 3^7.13

S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13

M= 2+ 2+ 23+....+210 

M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3

=> M chia hết cho 3

A=  7+ 72 + 73 +.....+78 

A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)

A= 7. 400 + 7^5 . 400

A = 400( 7+7^5)

A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5

24 tháng 8 2017

  Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và  a2b2 = 2.(-5) =(-1).10 =c2d2

P(x) = (9x2 – 9x – 10)(9x2  + 9x – 10) + 24x2

Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:

          Q(y) = y(y + 10x) = 24x2

          Tìm  m.n = 24x2 và  m + n = 10x ta chọn được  m = 6x , n = 4x

Ta được: Q(y) = y2 + 10xy + 24x2

                                = (y + 6x)(y + 4x)

Do đó:     P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

7 tháng 1 2018

cái đó mình chịu

7 tháng 1 2018

ukm ko sao