K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

1. Chứng tỏ rằng: ab + ba chia hết cho 11:

Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b) 

Vì \(11\left(a+b\right)⋮11\)

\(\Rightarrow ab+ba⋮11\)

Chứng tỏ rằng: ab - ba chia hết cho 9

Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)

vì \(9\left(a-b\right)⋮9\)

\(\Rightarrow ab-ba⋮9\)

14 tháng 10 2019

1. a) Ta có : ab + ba =  (a0 + b) + (b0 + a)

                                = (10a + b) + (10b + a)

                                = 10a + b + 10b + a

                                = (10a + a) + (b + 10b)

                                = 11a + 11b

                                = 11(a + b) \(⋮\)11

=> ab + ba  \(⋮\)11 (ĐPCM)

b) Ta có : ab - ba = (a0 + b) - (b0 + a) 

                            = (10a + b) - (10b + a) 

                            = 10a + b - 10b - a

                            = (10a - a) - (10b - b)

                            = 9a - 9b

                            = 9(a - b) \(⋮\)9

=>  ab + ba  \(⋮\)9 (ĐPCM)

2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) \(⋮\)3 (ĐPCM)

3) 

Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) 

=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)

7 tháng 10 2019

Mình làm b2) nha!!!

a) ab+ba=(10a+b)+(10b+a)

              =11a+11b

              =11.(a+b)

\(\Rightarrow\)ab+ba\(⋮\)11

b)   ab-ba=(10a+b)-(10b+a)

               =10a+b-10b-a

               =(10a-a)+(b-10b)

               =9a+(-9b)

               =9a+9.(-b)

               =9.(a-b)

\(\Rightarrow\)ab-ba\(⋮\)9

Học tốt nha^^

14 tháng 10 2018

a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2

tổng của chúng là :

a + a + 1 + a + 2

= (a + a + a) + (1 + 2)

= 3a + 3

= 3(a + 1) ⋮ 3 (đpcm)

b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2

=> tích của chúng chia hết chô 2 (đpcm)

c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)

aaa = a.111 = a.3.37 ⋮ 37 (đpcm)

d, ab + ba 

= 10a + b + 10b + a

= (10a + a) + (10b + b)

= 11a + 11b

= 11(a + b) ⋮ 11 (đpcm)

14 tháng 10 2018

d, ab + ba 

= 10a + b + 10b + a

= a ( 10 + 1) + b(10+1)

= a.11 + b.11

= ( a + b ).11 \(⋮\)11

    Vậy ab + ba \(⋮\)11

             Hok tốt

12 tháng 8 2017

1) sai đề bài vì 1+2+3+4 = 10 nhưng có chia hết cho 4 đâu

12 tháng 8 2017

câu a sai đề rồi kìa Huy

6 tháng 12 2015

a) http://olm.vn/hoi-dap/question/16196.html Bạn vào đây nhé !

b) ab = 10a + b 
ba = 10b + a 
=>ab + ba = 11(a+b) chia het cho 11.

c) aaa = a x 111 = a x 3 x 37 

=> aaa luôn chia hết cho 37

d) aaabbb=a000bx111 
111 chia hết cho 37 nên aaabbb chia hết cho 37 

e)  ab=10*a+b 
ba=10*b+a 
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9

 

6 tháng 12 2015

a)  Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2

 nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2

Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2

Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2 

b) Ta có :ab= 10*a + b 
ba = 10*b + a 
=> ab + ba = 11(a+b) chia hết cho 11 
Vậy ab+ba chia hết cho 11

c)Ta có : aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37

d) aaabbb=aaa000+bbb=111﴾1000a+b﴿=37.3﴾1000a+b﴿ chia hết cho 37 

e) ab = 10 . a+b

ba = 10 .b+a ab ‐ ba = 9 . a ‐ 9 . b = 9 . (a ‐ b)

=> ab‐ba chia hết cho 9 

 

2 tháng 8 2016

a)Với a hoặc b bằng 2k bài toán coi như xong.

Nếu 2 và b bằng 2k+1:

2k+1+2p+1=2.(p+k+1) chia hết cho 2.

Ta có đpcm.

b)10a+10b+a

=11a+11b chia hết cho 11.(đpcm)

c)aaa=111.a

=37.3.a chia hết cho 37.(đpcm)

d)Tương tự.

e)10a+b-10b-a=9a-9b chia hết cho 9(đpcm)

f)3 số có dạng:

n;n+1;n+2.

Thử lần lượt 3k.3k+1;3k+2 luôn có 1 số chia hết cho 3(đpcm)

Chúc em học tốt^^

21 tháng 12 2017

thank

4 tháng 11 2018

Xét với 

a;b có 1 trong 2 số lẻ

=> ab chẵn vì trong tích có 1 thừa số chẵn

Và a+b lẻ vì 1 trong 2 số lẻ

=>ab(a+b)

là chẵn.lẻ=chẵn

Mà số chẵn thì chia hết cho 2(ĐPCM)

Với a và b đều lẻ thì a+b chẵn ab lẻ

chẵn.lẻ=chẵn chia hết cho 2(ĐPCM)

Với a và b chẵn thì chắc chắn chia hết cho 2

b,Ta có:

ab+ba=a.10+b+b.10+a=11.(a+b) chia hết cho 11(ĐPCM)

c, Ta có:

aaa=a.100+a.10+a=a.111

Mà 111 chia hết cho 37

=>aaa chia hết cho 37

d, aaabbb=a.100000+a.10000+a.1000+b.100+b.10+b.1

=a.111000+b.111

Mà 111000 chia hết cho 37 và 111 chia hết cho 37

=> aaabbb luôn chia hết cho 37

e, ab-ba=(a.10+b)-(b.10+a)

=a.9-b.9

=9(a-b) chia hết cho 9

=> ab-ba luôn chia hết cho 9