Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
a) \(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\)
Vì: \(\left(x-1\right)^2\ge0,\forall x\)
=> \(\left(x-1\right)^2+2>0,\forall x\)
=>đpcm
b) \(x^2+7x+13=\left(x^2+7x+\frac{49}{4}\right)+\frac{3}{4}=\left(x+\frac{7}{2}\right)^2+\frac{3}{4}\)
Vì: \(\left(x+\frac{7}{2}\right)^2\ge0,\forall x\)
=> \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}>0,\forall x\)
=>đpcm
c) \(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)
=> \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0,\forall x\)
=>đpcm
ng đầu tiên trên hoc24 nắm chắc kiến thức toán học là cj đó
a, x2-2x+3
=x2-2x+1+2
=(x-1)2+2
\(\Rightarrow\left(x-1\right)^2\ge0\)voi moi x
Dpcm
b, x2+7x+13
=x2+7x+\(\frac{49}{4}\)+\(\frac{3}{4}\)
=\(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2\ge0\)voi moi x
Dpcm
c, x-x2-1
=-x2+x-1
=\(-x^2+2.\frac{1}{2}x-\frac{1}{4}+\frac{5}{4}\)
=\(-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
\(=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\)
Dpcm
nho k nha
E=4x2+5x+5>0 với mọi x
=(4x2 +4x+1)+4
=(2x+1)\(^2\)+4
Với mọi x thuộc R thì (2x+1)\(^2\)>=0
Suy ra(2x+1)\(^2\)+4>=4>0
Hay E>0 với mọi x thuộc R(đpcm)
F=5x2-6x+7>0 với mọi x
=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)
=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)
Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0
Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0
Hay F >0 với mọi x(đpcm)
G=-x2+5x -6<0 với mọi x
=-(x2-5x+6,25)+0,25
=-(x-2,5)2 +0,25
Với mọi x thuộc R thì -(x-2,5)2 <=0
Suy ra -(x-2,5)2 +0,25<0
Hay G<0 với mọi x (đpcm)
chúc bạn học tốt ạ
a) \(-2x^2+2x+1>0\)
\(-\left(2x^2-2x-1\right)>0\)
nhân 2 vế với (-1)=> đổi dấu sao sánh
\(\Leftrightarrow2x^2-2x-1< 0\)
\(\Leftrightarrow x^2-x-\frac{1}{2}< 0\)
\(\Leftrightarrow x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\frac{1}{4}-\frac{1}{2}< 0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)
ta có \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi \(x\)
=> \(\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)(đpcm)
b) \(9x^2-6x+2>0\)
<=> \(\left(3x\right)^2-2.3.x+1-1+2>0\)
<=>\(\left(3x-1\right)^2+1>0\)(1)
vì \(\left(3x-1\right)^2\ge0\)với mọi \(x\)=> (1) luôn đúng ( bạn lí giải tương tự như trên nha)
c)\(-4x^2-4x-2< 0\)
\(\Leftrightarrow-\left(4x^2+4x+2\right)< 0\)
nhân 2 vế với (-1)=> đổi dấu so sánh
\(4x^2+4x+2>0\)
\(\Leftrightarrow\left(2x+1\right)^2+1>0\)
lí giải tương tự như trên
=> đpcm
a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)
Ta có : 4x2 + 2x + 1
= (2x)2 + 2.2x.\(\frac{1}{2}\) + \(\frac{1}{2}+\frac{3}{4}\)
= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Mà : (2x + \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(>0\forall x\)
Vậy 4x2 + 2x + 1 \(>0\forall x\)
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
a)\(x^2-4xy+4y^2+3\)
\(=\left(x-2y\right)^2+3\)
Do \(\left(x-2y\right)^2\ge0\forall x,y\)
\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)
\(\left(x-2y\right)^2+3>0\forall x,y\)
=> Đpcm
b)\(2x-2x^2-1\)
\(=-x^2-x^2+2x-1\)
\(=-x^2-\left(x-1\right)^2\)
\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)
=> đpcm
Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.
Chúc bạn học tốt!^^
sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)