Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
Lời giải:
a. Giả sử $a,b$ đều không chia hết cho 3.
Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2, b^2$ chia 3 đều dư 1.
$\Rightarrow c^2=a^2+b^2$ chia 3 dư 2 (vô lý vì $c^2$ là scp mà scp khi chia 3 chỉ dư 0 hoặc 1)
Do đó điều giả sử là sai. Tức là trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3.
b.
Vì trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3 nên $ab\vdots 3$ (1)
Lại có:
Nếu $a,b$ đều lẻ thì $a^2\equiv 1\pmod 4, b^2\equiv 1\pmod 4$
$\Rightarrow c^2=a^2+b^2\equiv 2\pmod 4$ (vô lý vì scp khi chia 4 chỉ dư 0 hoặc 1)
Nếu $a,b$ có 1 số chẵn, 1 số lẻ. Không mất tổng quát giả sử $a$ chẵn, $b$ lẻ.
$\Rightarrow a^2+b^2=c^2$ lẻ nên $c$ lẻ.
Ta có: $a^2=c^2-b^2$
Mà $c^2, b^2$ là scp lẻ nên $c^2\equiv 1\pmod 8; b^2\equiv 1\pmod 8$
$\Rightarrow a^2\equiv 1-1\equiv 0\pmod 8$
$\Rightarrow a\vdots 4$
$\Rightarrow ab\vdots 4$
Nếu $a$ chẵn, $b$ chẵn thì hiển nhiên $ab\vdots 4$
Vậy tóm lại $ab\vdots 4$ (2)
Từ (1); (2) $\Rightarrow ab\vdots 12$
Ta có đpcm.