Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A H B
Gỉa sử \(\Delta ABC\)cân tại C, kẻ \(CH⊥AB\)
Ta có VT= \(\cos^2A=\frac{AH^2}{AC^2};\cos^2B=\frac{BH^2}{BC^2}\Rightarrow\cos^2A+\cos^2B=\frac{AH^2}{AC^2}+\frac{BH^2}{BC^2}=2.\frac{AH^2}{AC^2}\)do \(\hept{\begin{cases}AH=BH\\AC=BC\end{cases}}\)
\(\sin^2A=\frac{CH^2}{CA^2};\sin^2B=\frac{CH^2}{CB^2}\Rightarrow\sin^2A+\sin^2B=2.\frac{CH^2}{CA^2}\)
\(\Rightarrow\frac{\cos^2A+\cos^2B}{\sin^2A+\sin^2B}=\frac{2.\frac{AH^2}{AC^2}}{2.\frac{CH^2}{AC^2}}=\frac{AH^2}{CH^2}\)
Ta có VP =\(\frac{1}{2}\left(\cot^2A+\cot^2B\right)=\frac{1}{2}.\left(\frac{AH^2}{CH^2}+\frac{BH^2}{CH^2}\right)=\frac{1}{2}\left(2.\frac{AH^2}{CH^2}\right)=\frac{AH^2}{CH^2}\)
Ta thấy VT=VP\(\Rightarrow\)giả sử đúng
Vậy ........
a) 1 + tan22 a =1 +(\(\dfrac{sina}{cosa}\))2 =\(\dfrac{sina+cosa}{cos^2a}\)=\(\dfrac{1}{cos^2a}\)
b) 1 + cot2 a= 1 +(\(\dfrac{cosa}{sina}\))2 = \(\dfrac{cosa+sina}{sin^2a}\)=\(\dfrac{1}{sin^2a}\)
c) tan2 a (2 sin2a + 3 cos2 a - 2)
=tan2 a[cos2 a +2 (\(sina^2+cos^2a\))-2 ]
=\(\dfrac{sin^2a}{cos^2a}\)×\(cos^2a=sin^2a\)
b: \(1+cot^2a=1+\left(\dfrac{cosa}{sina}\right)^2=\dfrac{1}{sin^2a}\)
c: \(=tan^2a\left[2\left(1-cos^2a\right)+3cos^2a-2\right]\)
\(=tan^2a\left[cos^2a\right]\)
\(=\dfrac{sin^2a}{cos^2a}\cdot cos^2a=sin^2a\)
Lời giải:
a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
b)
\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
c) Đề bài sai.
\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)
\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)
\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)
d)
\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)
\(=1-2\sin a\cos a\)
e) ĐK tồn tại tan là $\cos x\neq 0$
Vì \(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)
Ta có:
\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)
\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)
\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)
Bài 2:
\(1+\tan ^2a=1+\frac{\sin ^2a}{\cos ^2a}=\frac{\cos ^2a+\sin ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
\(1+\cot ^2a=1+\frac{\cos ^2a}{\sin ^2a}=\frac{\sin ^2a+\cos ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
Ta có đpcm.
1.
$0< a< 90^0\Rightarrow `1>\sin a, \cos a>0$
Do đó:
$\sin a-\tan a=\sin a-\frac{\sin a}{\cos a}=\frac{\sin a(\cos a-1)}{\cos a}<0$
$\Rightarrow \sin a< \tan a$
(đpcm)
$\cos a-\cot a=\cos a-\frac{\cos a}{\sin a}=\frac{\cos a(\sin a-1)}{\sin a}<0$
$\Rightarrow \cos a< \cot a$ (đpcm)
B A C a
Xét ΔBAC vuông tại B có a = ^A ta có :
a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)
b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)
c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)
d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)
e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)
\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)
f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)
\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm