Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/1500 = 1/1500
1/1001 > 1/1500
1/1002 > 1/1500
1/1003 > 1/1500 => 1/1001 + 1/1002 + 1/1003 + ... + 1/1499
. . . . . . . . . . . > 1/1500 + 1/1500 + 1/1500 + ... + 1/1500 (499 số hạng 1/1500)
1/1499 > 1/1500 > 499/1500
=> 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 499/1500 + 1/1500 = 500/1500 = 1/3
Vậy 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 1/3
k cho mình nha! Cảm ơn!
a) 1/1001+ 1/1002+ ... + 1/2500> 1/5
Ta có: 1/1001> 1/2500+ 1/1002> 1/2500+ ...+1/2500 =1/2500
=>( 1/1001+ 1/1002+ ...+ 1/2500)> ( 1/2500+ 1/2500+ ...+1/2500)
=>( 1/1001+ 1/1002+ ...+ 1/2500)> 3/5> 1/5
=> 1/1001+ 1/1002+ ...+ 1/2500> 1/5
XIN LỖI NHA NHƯNG VỀ TRƯỚC KO THỂ LỚN HƠN ĐƯỢC ĐÂU .THÔNG CẢM CHO MÌNH .
lưu ý : đúng k nếu sai ,hãy k nếu đúng .
các bạn cố tìm câu trả lời giúp mik , mik đang cần gấp lắm
Gọi tổng trên là A, ta có:
a) A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(< \frac{1}{1}-\frac{1}{2008}\)
\(< 1-\frac{1}{2008}\)
Vì 1 - 1/2008 < 1 nên A < 1 - 1/2008 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< 1\)
câu b đề sao đấy bạn