Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: (bài này là bài khó nhất trong đề thi HSG 2 năm trước của mình, nghĩ lại thấy dễ)
Áp dụng định Pi - ta - go :
Trong tam giác vuông OAP có: AP2 = OA2 - OP2
Trong tam giác vuông OAN có: AN2 = OA2 - ON2
Tương tự, với các tam giác vuông OBP; OBM; OCM; OCN
Ta có: AN2 + BP2 + CM2 = (OA2 - ON2) + (OB2 - OP2) + (OC2 - OM2) = (OA2 + OB2 + OC2) - (ON2 + OP2 + OM2)
AP2 + BM2 + CN2 = (OA2 - OP2) + (OB2 - OM2) + (OC2 - ON2) = (OA2 + OB2 + OC2) - (ON2 + OP2 + OM2)
=> AN2 + BP2 + CM2 = AP2 + BM2 + CN2
Câu 2: đề ko rõ
Bài giải
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\frac{1}{2}-\frac{1}{2006}\)
\(A=\frac{501}{1003}\)
Bạn tự vẽ hình nhé :
a)\(\Delta ABC\)cân tại A có\(\widehat{B}=\widehat{C}\).\(\Delta BMI,\Delta CNI\)lần lượt vuông tại M,N có : BI = CI (I là trung điểm BC) ;\(\widehat{B}=\widehat{C}\)(cmt)
\(\Rightarrow\Delta BMI=\Delta CNI\left(ch-gn\right)\)
b)\(\Delta AIB,\Delta AIC\)có AI chung ; AB = AC (\(\Delta ABC\)cân tại A) ; IB = IC nên\(\Delta AIB=\Delta AIC\left(c.c.c\right)\)
=>\(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng) mà\(\widehat{AIB}+\widehat{AIC}=180^0\)(kề bù)\(\Rightarrow\widehat{AIC}=90^0\)
Áp dụng định lí Pi-ta-go vào các tam giác vuông\(\Delta AIC,\Delta AIN,\Delta INC\),ta lần lượt có :
AI2 + IC2 = AC2 ; AN2 = AI2 - IN2 ; NC2 = IC2 - IN2
=> AC2 - AN2 - NC2 = AI2 + IC2 - AI2 + IN2 - IC2 + IN2 = 2IN2
c) BM = CN (2 cạnh tương ứng của\(\Delta BMI=\Delta CNI\)) mà AB = AC
=> AB - BM = AC - CN hay AM = AN => \(\Delta AMN\)cân tại A
A B C I M N
a)\(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\widehat{MBI}=\widehat{NCI}\right)\)
Xét \(\Delta BMI\)và\(\Delta CNI:\hept{\begin{cases}\widehat{BMI}=\widehat{CNI}=90^0\\BM=CN\\\widehat{MBI}=\widehat{NCI}\end{cases}\Rightarrow\Delta BMI=\Delta CNI}\)(cạnh huyền góc nhọn)
b) Xét \(\Delta CNI:\widehat{CNI}=90^0\Rightarrow\)\(IN^2=IC^2-CN^2\left(Pytago\right)\left(1\right)\)
\(\Delta AIN:\widehat{INA}=90^0\Rightarrow IN^2=IA^2-AN^2\left(Pytago\right)\left(2\right)\)
Từ (1) và (2)\(\Rightarrow2IN^2=IC^2-CN^2+IA^2-AN^2=IC^2+IA^2-AN^2-NC^2\left(3\right)\)
Xét \(\Delta AIC:\widehat{AIC}=90^0\)(AI là đường trung tuyến và cũng là đường cao)
\(\Rightarrow AI^2+IC^2=AC^2\left(Pytago\right)\left(4\right)\)
Thay (4) vào 93), ta có: \(2IN^2=AC^2-AN^2-NC^2\left(đpcm\right)\)
c) I là trung điểm của BC=> AI là dường trung tuyến. Mà \(\Delta ABC\)cân tại A=> AI cũng là đường phân giác.
\(\Rightarrow\widehat{MAI}=\widehat{NAI}\)
Xét \(\Delta MAI\)và \(\Delta NAI:\hept{\begin{cases}\widehat{AMI}=\widehat{ANI}=90^0\\AI\\\widehat{MAI}=\widehat{NAI}\end{cases}\Rightarrow\Delta MAI=\Delta NAI}\)(cạnh huyền góc nhọn)
\(\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A.
Giải hơi muộn nhưng các bạn nhớ nha.
Bài 1 :
Ta có :
\(\left(x-1\right)^6=\left(x-1\right)^8\)
\(\Leftrightarrow\)\(x-1=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(1-x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)
A B C M K E H 1 2 3 1 1 2 1 2 3
Do ΔABC cân nên AM vừa là đường trung tuyến vừa là đường trung trực với cạnh BC
=> ΔAMB và ΔAMC vuông cân và bằng nhau
=> Góc C1= Góc A1
Xét ΔABH và ΔCAK có
BA=AC( ΔABC cân)
Góc B1=Góc A3 ( cùng phụ với góc BAK)
Đều _|_ AK
=> ΔCAK=ΔABH ( cạnh huyền góc nhọn)
=> Góc BAK = Góc CAK
Mà Góc C1= Góc A1
=> Góc A2= Góc C2
Xét 2 ΔAHM và ΔCKM có
AM=MC ( đường trung tuyến ứng với cạnh huyền)
Góc A2= Góc C2 (cmt)
AH=CK (vì ΔCAK=ΔABH)
=> ΔAHM = ΔCKM (c.g.c)
=>HM=MK=> ΔMHK cân tại M (1)
Ta lại có Góc M1= Góc M2
mà Góc M1+góc M3=90o
=> Góc M2+ Góc M3 = Góc HMK =90o (2)
Từ (1) Và (2) => ΔMHK vuông cân tại M
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà => Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà => Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ; => Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân