Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath
1) x4y2 + x2y4 + x4y3 + x2y5 = (x4y2 + x2y4) + (x4y3 + x2y5) = x2y2.(x2 + y2) + x2y3.(x2 + y2) = x2y2.(x2+ y2) (1 + y) = [xy.(x2 + y2)].[xy(1+y)]
=> x4y2 + x2y4 + x4y3 + x2y5 chia cho xy.(x2 + y2) bằng xy.(1+ y)
2) A = (n2 - 8)2 + 36 = n4 - 16n2 + 100 = (n4 + 20n2 + 100) - 36n2 = (n2 + 10)2 - (6n)2 = (n2 - 6n+ 10).(n2 + 6n+ 10)
Vậy để A là số nguyên tố thì n2 - 6n + 10 = 1 hoặc n2 + 6n + 10 = 1
Mà n là số tự nhiên nên n2+ 6n + 10 > 1
=> n2 - 6n + 10 = 1 => n2 - 6n + 9 = 0 => (n -3)2 = 0 => n = 3
Vậy....
3) a) = xy(x - y) - xz(x + z) + yz.[(x+ z) + (x - y)] = xy(x - y) - xz(x + z) + yz.(x + z) + yz(x - y)
= [xy(x - y) + yz.(x - y)] + [(yz.(x+ z) - xz(x+z)] = y(x - y)(x+ z) + z(x + z).(y - x) = (x+ z)(x- y).(y - z)
b) = (x2 + x)2 - (2x)2 - 4(x+3) = (x2 + x + 2x).(x2 + x- 2x) - 4(x+3) = (x2 + 3x).(x2 - x) - 4(x+3)
= (x+3).[x.(x2 - x) - 4] = (x+3).(x3 - x2 - 4) = (x+3).(x3 - 8 + 4 - x2) = (x+3).[(x - 2)(x2 + 2x + 4) - (x - 2).(x+2)]
= (x + 3).(x - 2).(x2 + 2x + 4 - x- 2) = (x + 3).(x - 2).(x2 + x + 2)
4) a) n4 + 1/4 = (n4 + n2 + 1/4) - n2 = (n2 + 1/2)2 - n2 = (n2 - n + 1/2).(n2 + n + 1/2) = [n(n - 1) + 1/2].[n.(n+1) + 1/2]
Áp dụng công thức ta có:
A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}=\frac{\frac{1}{2}.\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right)...\left(18.19+\frac{1}{2}\right).\left(19.20+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right).\left(4.5+\frac{1}{2}\right)...\left(19.20+\frac{1}{2}\right).\left(20.21+\frac{1}{2}\right)}\)
A = \(\frac{\frac{1}{2}}{20.21+\frac{1}{2}}=\frac{1}{841}\)
1) x2-4x+5+y2+2y=0
<=>x2-4x+4+y2+2y+1=0
<=>(x-2)2+(x+1)2=0
<=>x-2=0 và x+1=0
<=>x=2 và x=-1
2)2p.p2-(p3-1)+(p+3)2p2-3p5
<=>2p3-p3+1+2p3+6p2-3p5
<=>3p3+6p2-3p5+1
3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1
=1
4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3
=-18x2+3(đề sai)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x
=16
Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x
5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0
b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0
6)M+(12x4-15x2y+2xy2+7)=0
<=>M =-(12x4-15x2y+2xy2+7)
<=>M =-12x4+15x2y-2xy2-7
1) Từ \(x+y+z=6\) và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)
Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)
Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.
Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm
Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)
-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9
Vậy mệnh đề đúng với n=1
-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó, \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1
Ta phải cm mệnh đề cũng đúng với k+1:
Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)
<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)
Ta thấy:
\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.
Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3
-1 chia 9 dư -1
Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9
Kết luận: Mệnh đề đúng với mọi n thuộc Z
Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử
=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)
Bài 2:
x=y+1 =>x-y=1
Ta có :
(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)
=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)
\(1,x+y+z=0=>x=-\left(y+z\right)\)
\(=>x^2=\left(y+z\right)^2=y^2+2yz+z^2\)
\(=>x^2-y^2-z^2=2yz\)
\(=>\left(x^2-y^2-z^2\right)^2=\left(2yz\right)^2=4y^2z^2\)
\(=>x^4+y^4+z^4-2x^2y^2-2x^2z^2+2y^2z^2=4y^2z^2\)
\(=>x^4+y^4+z^4=4y^2z^2-2y^2z^2+2x^2z^2+2x^2y^2=2x^2y^2+2y^2z^2+2x^2z^2\)
\(=>2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\left(đpcm\right)\)
\(2,A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left[\left(x^2\right)^3-\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)
\(=2\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2x^4+2x^2y^2+2y^4-3x^4-3y^4=-x^4+2x^2y^2-y^4\)
\(=-\left(x^4-2x^2y^2+z^4\right)=-\left[\left(x^2-y^2\right)^2\right]=-1\) (do x2-y2=1)
\(3,\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x-3\right)\left(x+3\right)\left(x-1\right)\left(x+1\right)+15=\left(x^2-9\right)\left(x^2-1\right)+15\left(1\right)\)
Đặt \(x^2-5=t\),khi đó (1) trở thành :
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(x^2-6\right)\left(x^2-4\right)=\left(x^2-6\right)\left(x-2\right)\left(x+2\right)\)
\(4,a,20^n-1=20^n-1^n=\left(20-1\right)\left(20^{n-1}+20^{n-1}+...+1^{n-1}\right)\)
chia hết cho (20-1)=19
=>20n-1 là hợp số vì có nhiều hơn 2 ước
b) đang kẹt,vấn đề nằm ở đề