K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 9 2019

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=9\Rightarrow x+y+z\ge3\)

\(P=\sum\frac{x^2}{\sqrt{x^3+8}}=\sum\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\sum\frac{2x^2}{x^2-x+6}\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2+6-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}-1+1\)

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2+\left(x+y+z\right)-12}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1=\frac{\left(x+y+z-3\right)\left(x+y+z+4\right)}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1\)

Do \(x+y+z-3\ge0\Rightarrow P\ge1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

26 tháng 9 2019

Èo, thé này mà sang giờ em nghĩ mãi ko ra:(

22 tháng 9 2017

5353

Để P là con của Q thì \(\left\{{}\begin{matrix}a-7>-4\\a< -3\end{matrix}\right.\Leftrightarrow3< a< -3\left(loại\right)\)

8 tháng 5 2021

1) Khang dinh nao sau day la dung

A. So do cua 1 cung luong giac luon la so thuc [0; π] 

B. So do cua 1 cung luong giac la 1 so thuc tuy y

C. So do cua 1 cung luong giac luon khong vuot qua 2π

D. So do cua 1 cung luong giac luon la 1 so khong am

Trường hợp 1: m=0

=>-3<0(luôn đúng)

=>Nhận

Trường hợp 2: m<>0

\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)

Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)

Vậy: -3<m<=0