Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^2+2b^2=5ab\)
<=> \(2a^2+2b^2-5ab=0\)
<=> \(2a^2-4ab-ab+2b^2=0\)
<=> \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)
<=> \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)
Do b > a > 0
=> b = 2a
\(A=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)
\(2a^2+2b^2=5ab\)
<=> \(2a^2+2b^2-5ab=0\)
<=> \(2a^2-4ab-ab+2b^2=0\)
<=> \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)
<=> \(\left(2a-b\right)\left(a-2b\right)=0\)
<=> \(\orbr{\begin{cases}2a-b=0\left(L\right)\\a-2b=0\end{cases}}\)
=> \(a=2b\)
=> \(A=\frac{a+2b}{2a-b}=\frac{2b+2b}{2.2b-b}=\frac{4b}{3b}=\frac{4}{3}\)
a: \(f\left(x\right)=-\left(x-1\right)^2\)
\(f\left(-\dfrac{1}{3}\right)=-\left(-\dfrac{1}{3}-1\right)^2=-\dfrac{16}{9}\)
\(g\left(-\dfrac{1}{2}\right)=\dfrac{1}{4}-\dfrac{1}{2}+1=\dfrac{1}{4}-\dfrac{2}{4}+\dfrac{4}{4}=\dfrac{3}{4}\)
\(g\left(\dfrac{1}{10}\right)=\dfrac{1}{100}+\dfrac{1}{10}+1=1.01\)
b: Vì \(-\left(x-1\right)^2\le0\forall x\)
nên không có giá trị nào của x để f(x)>0
Bài 1:
a: \(\left(2x-1\right)^4=16\)
=>2x-1=2 hoặc 2x-1=-2
=>2x=3 hoặc 2x=-1
=>x=3/2 hoặc x=-1/2
b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)
c: \(10800=2^4\cdot3^3\cdot5^2\)
mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)
Ta có: \(y=\frac{m}{m+79}=\frac{m+79-79}{m+79}=\frac{m+79}{m+79}-\frac{79}{m+79}=1-\frac{79}{m+79}\)
Để y nguyên thì \(1-\frac{79}{m+79}\in Z\Leftrightarrow\frac{79}{m+79}\in Z\Rightarrow m+79\inƯ\left(79\right)\)
Ta có bảng sau:
m+79 | -1 | 1 | 79 | -79 |
m | -80 | -78 | 0 | -158 |
Vậy \(m\in\left\{-158;-80;-78;0\right\}\)
Đối vớ bài dạng này em cần tìm cách tách trên tử để rút gọn ra phân thức cuối cùng chỉ chứa hằng số trên tử. Chúc em học tốt :)