K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 10 2019

Do C đối xứng A qua B nên B là trung điểm AC

Áp dụng công thức trung điểm:

\(\left\{{}\begin{matrix}x_B=\frac{x_A+x_C}{2}\\y_B=\frac{y_A+y_C}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_B-x_A=7\\y_C=2y_B-y_A=2\end{matrix}\right.\) \(\Rightarrow C\left(7;2\right)\)

\(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{OD}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DC}=3\overrightarrow{DC}\)

\(\Rightarrow\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3\left|\overrightarrow{DC}\right|=3a\)

Câu c cần biểu diễn vecto DE theo 2 vecto nào bạn?

4 tháng 10 2019

DE theo CA và CB bn

NV
5 tháng 11 2019

Đề bài sai bạn, \(\overrightarrow{a}\perp\overrightarrow{d}\) thì \(\overrightarrow{a}.\overrightarrow{d}=0\) chứ làm gì có chuyện \(\overrightarrow{a}.\overrightarrow{d}=20\) nữa

NV
3 tháng 11 2020

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;3-y\right)\\\overrightarrow{MB}=\left(4-x;-y\right)\\\overrightarrow{MC}=\left(2-x;-5-y\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\left(x-1;y+18\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+18=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-18\end{matrix}\right.\)

\(\Rightarrow M\left(1;-18\right)\)

NV
18 tháng 4 2020

22.

Đường thẳng d có 1 vtpt là \(\left(2;-3\right)\)

Do đó \(\left(-3;2\right)\) ko là 1 vtpt của d (vì ko thể biểu diễn thông qua vt (2;-3)

23.

Thay tọa độ 4 điểm vào thì điểm A(5;3) ko thỏa mãn

24.

Đường thẳng d nhận \(\left(3;5\right)\) là 1 vtpt nên nhận \(\left(5;-3\right)\) là 1 vtcp

\(\Rightarrow\) d có hệ số góc là \(-\frac{3}{5}\)

Đáp án C sai

Mọi người ơi giải giúp mình nha .Mình cảm ơn mọi người nhiều 1/Cho giao điểm của parabol (P) y=-3x^2+x+3 và đường thẳng (d ) y=3x-2 có tọa độ là: A/(1;1)và ( -5/3; -7) B/(1;1)và ( -5/3; 7) C/(-1;1)và ( -5/3; 7) D/ (1;1)và ( 5/3 ; 7) 2/Phương trình x^2 +4x +4m -8 =0 có hai nghiệm trái dấu khi: A/m <bằng 2 B/m > 2 C/ m < 2 D/ m <3 3/ Cho 2 điểm M ( 8; -1) và N ( 3; 2).Nếu P là điểm đối xứng với điểm M qua N thì P có...
Đọc tiếp

Mọi người ơi giải giúp mình nha .Mình cảm ơn mọi người nhiều

1/Cho giao điểm của parabol (P) y=-3x^2+x+3 và đường thẳng (d ) y=3x-2 có tọa độ là:

A/(1;1)và ( -5/3; -7)

B/(1;1)và ( -5/3; 7)

C/(-1;1)và ( -5/3; 7)

D/ (1;1)và ( 5/3 ; 7)

2/Phương trình x^2 +4x +4m -8 =0 có hai nghiệm trái dấu khi:

A/m <bằng 2

B/m > 2

C/ m < 2

D/ m <3

3/ Cho 2 điểm M ( 8; -1) và N ( 3; 2).Nếu P là điểm đối xứng với điểm M qua N thì P có tọa độ là:

A/P (11 ;-1)

B/ P (-2 ; 5)

C/P (13; -3)

D/ P (11/2 ;1/2 )

4/ Cho K (1;-3).Điểm A thuộc Ox ,B thuộc Oy sao cho trung điểm KB .Tọa đô điểm B là:

A/(1/3 ;0)

B/(0 ;2)

C/(0 ;3)

D/(4 ;2)

5/ cho vectơ a =(2;1) vectơ b=(3;0) vectơ c=(1;2).Phân thích vectơ c theo vectơ a và vectơ b ta đc kết quả:

A/ c=2a+b

B/ c=2a-b

C/ a=a-2b

D/ c= a+2b

6/ Phương trình x^2 -4x+m=0 có hai nghiệm phân biết khi

A/ m<bằng 4

B/ m> 4

C/ m < 4

D/ m>bằng 4

7/cho vectơ a =(2;-3) b=(2m;2n+1).Tìm m và n để vectơ a = vectơ b?

A/m=1 ;n=-2

B/m=-2 ;n=1

C/m=3 ;n=-5

D/m=0 ;n=-2

1
20 tháng 12 2017

Chào bạn . bạn tham khảo đáp án này nhé

1.A

2.C

3.B

5.B

6.C

7.A

Riêng câu 4 mk chưa hiểu ý bạn nên bạn xem lại câu hỏi rồi viết lại đề nhé

Thanks

NV
11 tháng 4 2020

6.

\(\overrightarrow{AB}=\left(3;6\right)=3\left(1;2\right)\) nên đường thẳng AB nhận \(\left(2;-1\right)\) là 1 vtpt

8.

Phương trình đường thẳng:

\(-1\left(x-4\right)+2\left(y-3\right)=0\Leftrightarrow-x+2y-2=0\)

(Hoặc \(x-2y+2=0\) cũng được)

NV
11 tháng 4 2020

2.

Đường thẳng d có 1 vtcp là \(\left(-2;3\right)\) hoặc \(\left(2;-3\right)\) cũng được

7.

Phương trình tham số của d: \(\left\{{}\begin{matrix}x=1-4t\\y=-4+9t\end{matrix}\right.\)

11 tháng 4 2020

2. VTCP: (-2;3)

7. \(d\left\{{}\begin{matrix}QuaA\left(1;-4\right)\\\overrightarrow{u}=\left(-4;9\right)\end{matrix}\right.\)=> PTTS \(\left\{{}\begin{matrix}x=1-4t\\y=-4+9t\end{matrix}\right.\)