K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

Bạn ơi cho mình hỏi, từ B kẻ BC vuông góc với AD tại đâu vậy?

 

NV
12 tháng 7 2021

undefined

NV
12 tháng 7 2021

O là trung điểm AB \(\Rightarrow OA=OB=\dfrac{AB}{2}=a\)

Áp dụng định lý Pitago:

\(AD=\sqrt{AO^2+OD^2}=\dfrac{a\sqrt{5}}{2}\)

Xét hai tam giác vuông AOD và ACB có góc A chung

\(\Rightarrow\Delta AOD\sim\Delta ACB\Rightarrow\dfrac{AD}{AB}=\dfrac{AO}{AC}\Rightarrow AC=\dfrac{AO.AB}{AD}=\dfrac{4a\sqrt{5}}{5}\) 

\(BC=\sqrt{AB^2-AC^2}=\dfrac{2a\sqrt{5}}{5}\)

b. Ta có: \(AE=\sqrt{AO^2+OE^2}=a\sqrt{2}\)

\(BE=\sqrt{OB^2+OE^2}=a\sqrt{2}\)

\(\Rightarrow AE^2+BE^2=4a^2=AB^2\)

\(\Rightarrow\Delta ABE\) vuông tại E (Pitago đảo)

\(\Rightarrow\) Hai điểm E và C cùng nhìn AB dưới 1 góc vuông nên bốn điểm A,B,C,E cùng thuộc đường tròn đường kính AB (đpcm)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

a)

Áp dụng định lý Pitago: \(AD^2=AO^2+OD^2=a^2+(\frac{a}{2})^2=\frac{5}{4}a^2\)

\(\Rightarrow AD=\frac{\sqrt{5}a}{2}\)

\(\cos A=\frac{AO}{AD}=\frac{a}{\frac{\sqrt{5}}{2}a}=\frac{2}{\sqrt{5}}\)

\(\cos A=\frac{AC}{AB}\Rightarrow AC=\cos A. AB=\frac{2}{\sqrt{5}}.2a=\frac{4}{\sqrt{5}}a\)

\(BC^2=AB^2-AC^2=(2a)^2-(\frac{4}{\sqrt{5}}a)^2=\frac{4}{5}a^2\Rightarrow BC=\frac{2}{\sqrt{5}}a\)

b)

Xét tam giác vuông tại $C$ là $CAB$ có đường trung tuyến $CO$ ứng với cạnh huyền nên \(CM=AO=OB=\frac{AB}{2}=a\)

Do đó: \(OC=OA=OB=OE=a\) nên 4 điểm $C,A,B,E$ cùng nằm trên đường tròn tâm $O$

22 tháng 7 2019

sao không có hình :<