Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
A M N D B I O
a. Xét tam giác ABC và tam giác DMC
CA = CD
CB = CM
Góc ACB = góc DCM
=> Tam giác ABC = tam giác DMC (c.g.c)
b. Từ chứng minh ở phần a) => Góc ABC = góc CDM hay góc BAD = góc ADM
Mà hai góc ở vị trí so le trong
=> AB//MB
c. bạn thông cảm, ý này mình không biết làm ^^.
a) xét tam giác ABC và tam giác DMC có:
CA=CD
góc ACB= góc DCM ( đối đỉnh)
BC=CM
=> tam giác ABC=tam giác DMC (c.g.c)
b) theo a) tam giác ABC=tam giác DMC=> góc A= góc D
mà đây là 2 góc so le trong nên MD//AB
c) Xét tam giác ICB và tam giác NCM có:
góc B= góc M ( tam giác ABC= tam giác DMC)
BC=MC
góc ICB= góc NCM ( đối đỉnh)
=> tam giác ICB= tam giác NCM( g.c.g)
=> IB=MN
Mà AB=MD ( tam giác ABC= tam giác DMC)
=> AB-IB= MD-MN
=> AI=ND
Xét tam giác ABM và tam giác DCM có:
AM=MD
góc AMB=góc CMD ( đối đỉnh)
BM=CM ( M là trung điểm của BC)
=> tam giác ABM=tam giác DCM( c.g.c)
b) theo a): tam giác ABM=tam giác DCM => góc BAM=góc D
mà chúng là hai góc so le trong => AB//DC
c) Vì AB=AC=> tam giác ABC cân tại A
tam giác ABC có AM là đường trung tuyến nên đồng thời là đường trung trực => AM vuông góc vs BC
d) Để góc ADC=30 độ thì góc BAM=30 độ
=> góc B= 90 độ-30 độ=60 độ
tam giác ABC cân tai A có góc B =60 độ
=> tam giác ABC đều
Vậy tam giác ABC đều thì góc ADC=30 độ
A B C D M
a,Xét \(\Delta ABM\) và \(\Delta DCM\) ta có :
\(AM=MD\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )
\(BM=MC\left(gt\right)\)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
b, Vì \(\Delta ABM=\Delta DCM\)( Câu a )
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên :
=> AB // DC
c, Ta có : AM là trung tuyến đông thời cũng là đường cao của tam giác ABC cân tại A;
\(\Rightarrow AM⊥BC\)
câu d bn tự làm nha
#Tự vẽ hình nhé bạn#k mình nha#Thanks#
a ) Xét \(\Delta\)ABC và \(\Delta\)DMC có :
- AC = CD ( giả thiết )
- BC = CM ( giả thiết )
- Góc BCA = Góc MCD ( đối đỉnh )
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DMC ( c - g - c )
b ) Ta có : \(\Delta\)ABC = \(\Delta\)DMC ( chứng minh trên )
\(\Rightarrow\)\(BÂC\) = Góc MDC ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên\(AB // MD\)
c ) Xét \(\Delta\)IAC và \(\Delta\) NDCcó :
- Góc ICA = Góc NCD ( đối đỉnh )
- AC = CD ( giả thiết )
- BÂC = Góc CDN ( chứng minh trên )
\(\Rightarrow\)\(\Delta\)IAC = \(\Delta\)NDC ( g - c - g )
\(\Rightarrow\)IA = ND ( 2 cạnh tương ứng )
Ta có : IB + AI = AB nên IB = AB - AI
Ta lại có : MN + ND = MD nên MN = MD - ND
Mà AB = MD và AI = ND
\(\Rightarrow\)IB = MN