K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

bn tự vẽ hình nha !

đặt CH=b'

Xét tam giác BHC vuông tại H có:

a2= BH2 + b'2(Đlí pi-ta-go)(1)

Xét tam giác ABH vuông tại H có:

=> BH2 = AB2-AH2=c2 - c'2

Từ (1) => a2= c2-c'2+b'2

=c2-c'2+(b-c')2 ( Vì b' +c'=b)

=c2+b2-2bc' (ĐPCM)

7 tháng 9 2018

a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)

\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)

\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)

\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)

\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)

b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)

\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)

\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)

\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)

Ta có AH=DE ( vì ADHE là hcn)

mà AH2=BH.BC

=> AH4=HB2.HC2=BD.CE.BC.BA

=> AH3=BD.CE.BC

15 tháng 7 2019

Ta có: \(BM^2-CM^2=\left(BM+CM\right)\left(BM-CM\right)=BC.BH\)

Áp dụng hệ thức lượng vào tam giác ABC có đường cao AH ta có:

\(BC.BH=AB^2\)

Vậy \(BM^2-CM^2=AB^2\)

7 tháng 9 2018

bài 1 : (1) ta có : \(AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)

\(=BH^2+AC^2\left(đpcm\right)\)

(2) a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)

\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)

\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)

\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)

\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)

b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)

\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)

\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)

\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)

7 tháng 9 2018

bài 2 : (1) ta có : \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{BH^2.AC}{AB.HC^2}\)

\(=\dfrac{\dfrac{AB^4}{BC^2}.AC}{AB.\dfrac{AC^4}{BC^2}}=\left(\dfrac{AB}{AC}\right)^3\left(đpcm\right)\)

(2) ta có : \(BC.BE.CF=\dfrac{BH^2.HC^2}{AB.AC}.BC=\dfrac{BH^2.HC^2}{AH}\)

\(=\dfrac{\dfrac{AB^4.AC^4}{BC^4}}{AH}=\dfrac{BC^4.AH^4}{BC^4.AH}=AH^3\left(đpcm\right)\)