\(\frac{1}{AD}=\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

vẽ đường song song 

Hình tự vẽ =)

Kẻ \(DE//AB\left(E\in AC\right)\)

Vì AD là phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAD}=\widehat{CAD}\)

Vì \(DE//AB\)

\(\Rightarrow\widehat{ADE}=\widehat{BAD}\)

\(\Rightarrow\widehat{ADE}=\widehat{CAD}\)

\(\Rightarrow\Delta DAE\)cân tại \(E\)

\(\Rightarrow DE=AE\)

Đặt \(DE=AE=a\)

Vì \(DE//AB\)nên theo hệ quả của định lí Talet ,ta có :

\(\frac{DE}{AB}=\frac{CE}{AC}\)

\(\Rightarrow\frac{a}{AB}=\frac{AC-AE}{AC}\)

\(\Rightarrow\frac{a}{AB}=1-\frac{a}{AC}\)

\(\Rightarrow\frac{a}{AB}+\frac{a}{AC}=1\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{a}\)

Mà \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{AD}\)

\(\Rightarrow a=AD\)

\(\Rightarrow DE=AE=AD\)

\(\Rightarrow\Delta DAE\)đều

\(\Rightarrow\widehat{CAD}=60^o\)

\(\Rightarrow\widehat{BAC}=2\widehat{CAD}=2.60^o=120^o\)

Vậy \(\widehat{BAC}=120^o\)

@Vũ Minh Tuấn @Lê Thị Thục Hiền

17 tháng 9 2019

Bạn tham khảo tại đây nhé nhưng chỉ có mỗi câu a) thôi: Câu hỏi của Anh.

Chúc bạn học tốt!

15 tháng 2 2016

đã hok lớp 6 rồi

20 tháng 4 2019

A A B B C H D

Từ D kẻ DH // AC 

Do DH // AC : \(\Rightarrow\) \(\widehat{D_1}=\widehat{A_2}=60^0\)

Vì AD là đường phân giác \(\widehat{BAC}\):

\(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=60^0\)

\(\Rightarrow\)\(\widehat{D_1}=\widehat{A_1}=60^0\)

\(\Rightarrow\) \(\Delta AH\text{D}\) là tam giác đều

\(\Rightarrow\)\(AH=H\text{D}=A\text{D}\)

Do DH //  AH :

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{H\text{D}}{AC}\)

       \(\frac{AB-AH}{AB}=\frac{H\text{D}}{AC}\)

 \(\frac{AB}{AB}-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1=\frac{H\text{D}}{AC}+\frac{AH}{AB}\)

\(1=\frac{A\text{D}}{AC}+\frac{A\text{D}}{AB}\) ( VÌ AH = HD = AD )

\(1=A\text{D}.\left(\frac{1}{AC}+\frac{1}{AB}\right)\)

\(\frac{1}{A\text{D}}=\frac{1}{AC}+\frac{1}{AB}\)

\(\Rightarrow\)\(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{A\text{D}}\)( ĐPCM )