Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABH và ΔCAH có:
\(\widehat{AHB}=\widehat{CHA}=90\left(gt\right)\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ với \(\widehat{BAH}\) )
=>ΔABH=ΔCAH (g.g)
=>\(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)
=>\(\frac{20}{21}=\frac{420}{HC}=\frac{BH}{420}\)
=>\(HC=\frac{420\cdot21}{20}=441\)
\(BH=\frac{420\cdot20}{21}=400\)
=> BC=HC+HB=441+400=841
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(AB^2=BH\cdot BC=400\cdot841=336400\Rightarrow AB=580\)
\(AC^2=HC\cdot BC=441\cdot841=370881\Rightarrow AC=609\)
Vậy chu vi của ΔABC là: AB+AC+BC=580+609+841=2030
Giải:
Ta có: AB:AC = 20 : 21
=> AB:20 = AC:21 (1)
Đặt tỉ số (1) = X,ta có : AB =20X ; AC=21X
Áp dụng định lí PY-TA-GO,ta có:
BC=√(AB2+AC2)=√(20X)2+(21X)2=√(400X2+441X2)=√881X2=29X
Áp dụng hệ thức cạnh và đường cao trong tam giác ABC vuông tại A,ta có:
AH = (ABxAC):BC =(20X x 21X):29X =(140:3) X
=> 420 = (140:3)X => X = 9
=> AB = 20 x 9 = 180 (cm)
=> AC = 21 x 9 = 189 (cm)
=> BC = 29 x 9 =261 (cm)
=> Pabc = 180 + 189 + 261= 630 (cm)
AB/AC = 20/21 => Đặt AB/20 = AC / 21 = x
=> AB = 20x ; AC= 21x
Tam giác ABC vuông tại A , theo PY TA GO :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(20x\right)^2+\left(21x\right)^2}=\sqrt{400x^2+441x^2}=\sqrt{881x^2}=29x\)
Tam giác ABC vuông tại A, theo HTL :
AH = \(\frac{AB.AC}{BC}=\frac{20x.21x}{29x}=\frac{140}{3}x\)
=> 420 = 140/3 * x => x = 9
=> AB = 20 . 9 = 180
=> AC = 21.9 = 189
=> BC = 29 . 9 =261
=> Cabc = 180 + 189 + 261= 630
Lôi một bài từ rất lâu rồi ra làm nó không hay lắm nhưng tại thấy không ai trên này làm giống cách mình nên muốn làm thêm cái cách khác thôi:v
Theo đề, ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\Rightarrow AB=\dfrac{20AC}{21}\)
Vì ∆ABC vuông tại A nên áp dụng hệ thức lượng, ta có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{420^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{20AC}{21}\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{420^2}\)
\(\Leftrightarrow\dfrac{21^2}{20^2AC^2}+\dfrac{1}{AC^2}=\dfrac{1}{420^2}\)
\(\Leftrightarrow\dfrac{1}{AC^2}\left(\dfrac{21^2}{20^2}+1\right)=\dfrac{1}{420^2}\)
\(\Leftrightarrow\dfrac{1}{AC^2}=\dfrac{1}{420^2}:\left(\dfrac{21^2}{20^2}+1\right)=\dfrac{1}{609^2}\)
\(\Rightarrow AC=609\)
\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{609^2}=\dfrac{1}{420^2}\Leftrightarrow\dfrac{1}{AB^2}=\dfrac{1}{420^2}-\dfrac{1}{609^2}=\dfrac{1}{580^2}\)
\(\Rightarrow AB=580\)
Áp dụng định lý Py-ta-go vào ∆ vuông ABC, ta có:
\(BC^2=AB^2+AC^2=580^2+609^2=841^2\)
\(\Rightarrow BC=841\)
Chu vi ∆ABC là: \(C_{\text{∆}ABC}=AB+BC+AC=580+841+609=2031\)
P/s: Dùng máy tính của bạn nên đánh máy lâu vì không quen:")
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
Lap mình hỏng rồi nên mình chụp lên, bạn chịu khó nhìn nha!!!
Chúc bạn học thật tốt!:))