K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt HB=a; HC=b

Theo đề, ta có: -a+b=14

=>-a=14-b

=>a=14-b

Ta có: \(ab=24^2=576\)

\(\Leftrightarrow b\left(14-b\right)=576\)

\(\Leftrightarrow b^2-14b-576=0\)

=>b=32

=>BH=18(cm)

\(\dfrac{AB}{AC}=\sqrt{\dfrac{BH}{CH}}=\sqrt{\dfrac{18}{32}}=\dfrac{3}{4}\)

BC=BH+CH=50cm

DB/DC=AB/AC=3/4

=>DB=3/4DC

mà DB+DC+50

nên DB=150/7(cm); DC=200/7(cm)

 

30 tháng 10 2019

Câu hỏi của Vũ Kim Ngân - Toán lớp 9 - Học toán với OnlineMath.

Em tham khảo bài của bạn TRần Tuyết Như nhé!

3 tháng 9 2015

bạn bấm vào chữ'' đúng 0'' sẽ hiện ra đáp ánolm-logo.png

30 tháng 10 2019

Câu hỏi của Vũ Kim Ngân - Toán lớp 9 - Học toán với OnlineMath

12 tháng 6 2019

24 cm2 A B D H C

có:  HC . HB = AH\(^2\) = 576  trong tam giác vuông đường cao ứng với cạnh huyền bằng tích hình chiếu 2 cạnh góc vuông trên cạnh huyền) (1)

mà HC - HB = 14  => HC = 14 + HB

thay vào (1): HC . HB = (14 + HB) . HB = HB\(^2\) + 14HB  = 576  

=> HB\(^2\) + 14HB - 576 = 0  => (HB - 18) (HB + 32) = 0    => HB = 18 cm

=> HC = 14 + 18 = 32 cm    => BC = 18 + 32 = 50

=> AB\(^2\) = BH . BC = 18 . 50 = 900    => AB = 30  cm

=> AC\(^2\) = CH . BC = 32 . 50 = 1600  => AC = 40 cm

Có: BD/DC = AB/AC  => BD/AB = DC/AC  và BD + DC = 50

áp dụng tính chất dãy tỉ số bằng nhau đc:

AB/BD​ = AC/D​= AB+AC/BD+CD​ = 70/50​ = 7/5​

  • => BD = 5 . AB = 5 . 30 : 7 = 150/7 cm

=> CD = 50 - 150/7 = 200/7 cm

=> HD = 50 - CD  - BH = 50 - 200/7 - 18 = 24/7 cm

Xét tam giác vuông ADH: 

AD\(^2\) = AH\(^2\) + DH\(^2\) = 24\(^2\) + (24/7)\(^2\)

  • => AD = \(\sqrt{24^2+\left(\frac{24}{7}\right)^2\approx24,244}cm\)
23 tháng 6 2021

tham khảo của đỗ chí dũng câu hỏi của chi khánh

Ta có: BC=BD+DC=15+20=35(cm)
+ AD là phân giác => DC/DB=AB/AC
=> AB/AC=20/15=4/3
=> AB=4AC/3
lại có AB^2+AC^2=BC^2
<=> 16AC^2/9+AC^2=BC^2
<=> 25AC^2/9=1225
<=> AC^2=441
có tam giác ABC vuông tại A, AH là đường cao
=> AC^2=CH.BC
=> CH=AC^2/BC=441/35=12.6(cm)
=> BH=35-12.6=22.4(cm)

10c - 11b / 9 =11a-9c/10=9b-10a/11 .chứng minh a/9=b/10=c/11

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=30^2=900\)

\(\Leftrightarrow HC^2=1296\)

\(\Leftrightarrow HC=36\left(cm\right)\)

\(\Leftrightarrow HB=25\left(cm\right)\)

\(\Leftrightarrow BC=36+25=61\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=5\sqrt{61}\left(cm\right)\\AC=6\sqrt{61}\left(cm\right)\end{matrix}\right.\)