K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

A B C E D H

- Từ B kẻ đoạn thẳng BH cắt AD tại H sao cho \(\widehat{ABH}=\widehat{ADC}\) .

- Ta có : Sđ\(\stackrel\frown{EB}\) = Sđ\(\stackrel\frown{EC}\) ( GT )

\(\widehat{BAH}=\frac{1}{2}\)\(\stackrel\frown{EB}\) , \(\widehat{CAH}=\frac{1}{2}\)\(\stackrel\frown{EC}\)

=> \(\widehat{BAH}=\widehat{CAH}\)

- Xét \(\Delta AHB\)\(\Delta ACD\) có :

\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{ADC}\left(GT\right)\\\widehat{BAH}=\widehat{DAC}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta AHB\) ~ \(\Delta ACD\) ( g - g )

=> \(\frac{AB}{AD}=\frac{AH}{AC}\) ( tỉ số cạnh tương ứng )

=> \(AB.AC=AH.AD\left(I\right)\)

=> \(\widehat{BHD}=\widehat{ACD}\) ( góc tương ứng )

- Ta có : \(\widehat{ADC}\)\(\widehat{BDH}\) ở vị trí đối đỉnh .

=> \(\widehat{ADC}\) = \(\widehat{BDH}\)

- Xét \(\Delta ACD\)\(\Delta CHD\) có :

\(\left\{{}\begin{matrix}\widehat{ACD}=\widehat{BHD}\left(cmt\right)\\\widehat{ADC}=\widehat{BDH}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta ACD\) ~ \(\Delta CHD\) ( g - g )

=> \(\frac{BD}{AD}=\frac{DH}{DC}\)

=> \(AD.DH=BD.DC\left(II\right)\)

- Trừ vế ( I ) cho vế ( II ) ta được :

\(AB.AC-BD.DC=AD\left(AH.HD\right)=AD^2\) ( đpcm ) ( III )

Giải giúp tớ với, cần câu trả lời gấp ạk, thanks1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếpb/ Chứng minh rằng góc ACB+ góc AEB= 45 độ2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A...
Đọc tiếp

Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.

1
18 tháng 4 2016

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

20 tháng 8 2021

ui sợ thế sợ quá bạn ạ

26 tháng 2 2018

1/ Do EF//AD nên \(EF\perp AB\)

Theo tính chất đường kính dây cung ta có AB đi qua trung điểm EF hay AB là trung trực EF.

Vậy thì AE = AF; BE = BF.

2/ Ta thấy hai tam giác vuông DAO và DCO có chung cạnh huyền DO nên DAOC là tứ giác nội tiếp đường tròn đường kính DO.

3/Xét tam giác DEC và DCB có :

Góc D chung

\(\widehat{DCE}=\widehat{DBC}\)   (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)

\(\Rightarrow\Delta DEC\sim\Delta DCB\left(g-g\right)\)

\(\Rightarrow\frac{DE}{DC}=\frac{DC}{DB}\Rightarrow DC^2=DE.DB\)

4/ Vì \(\Delta DEC\sim\Delta DCB\Rightarrow\frac{EC}{BC}=\frac{DC}{DB}\Rightarrow EC=\frac{BC.DC}{DB}\)

\(\Rightarrow AC.EC=\frac{AC.BC.DC}{DB}=\frac{2S_{ABC}.DC}{DB}\)

Ta cần chứng minh AC.EC = AF.CH (*) hay \(\Rightarrow\frac{2S_{ABC}.DC}{CH}=AF.DB\Rightarrow\frac{2S_{ABC}.DC}{CH}=AE.DB\)

\(\Rightarrow AE.DB=AB.DC=AB.DA\)  (**)

(**) đúng vì \(AE.DB=AB.DA\left(=S_{DAB}\right)\)

Vậy (*) đúng hay AF.CH = AC.EC

5/ Ta cần chứng minh KA = KD để suy ra KE là tiếp tuyến. 
Kéo dài AE, cắt CH tại M .

Do DA // CH (Cùng vuông góc AB) nên \(\frac{AK}{CM}=\frac{KI}{IC}\) 
và \(\frac{KD}{CH}=\frac{KI}{IC}\Rightarrow\frac{AK}{MC}=\frac{KD}{CH}\)  (1)
Gọi P, J lần lượt là giao điểm của DP với CH và BC với AD.
\(\Rightarrow\frac{HP}{AD}=\frac{BP}{BD}=\frac{CP}{DJ}\)  (2)

Xét tam giác ACJ vuông tại C, AD = DC nên DC là đường trung tuyến. Suy ra AD = DJ. 
Từ (2) suy ra HP = PC.
Xét tam giác vuông AMH và PBH, ta có \(\widehat{AMH}=\widehat{HBP}\) (cạnh tương ứng vuông góc) 
\(\Rightarrow\Delta AMH\sim\Delta PBH\left(g-g\right)\)

\(\Rightarrow\frac{MH}{BH}=\frac{AH}{PH}\Rightarrow\frac{MH}{AH}=\frac{BH}{PH}\)
\(\Rightarrow MH=\frac{AH.HB}{PH}=\frac{AH.HB}{\frac{CH}{2}}=\frac{2AH.HB}{CH}\)   (3)
Do CH2 = AH.HB \(\Rightarrow\frac{2AH.HB}{CH}=2CH\)
Từ (3) \(\Rightarrow MH=2CH\Rightarrow CM=CH\) 
Từ (1) ta có AK = KD 
\(\Rightarrow\) KE là trung tuyến của tam giác vuông ADE \(\Rightarrow KA=KE\)
\(\Rightarrow\Delta OKA=\Delta OKE\left(c-c-c\right)\Rightarrow\widehat{KEO}=\widehat{KAO}=90^o\)
hay KE là tiếp tuyến của (O).

2 tháng 12 2015

1) Gọi cạnh tam giác đều là a => đường cao h =\(\frac{a\sqrt{3}}{2}\)=

mà h = 3/2R => \(\frac{a\sqrt{3}}{2}\)=\(\frac{3}{2}.\frac{4}{3}\) =2=> a =\(\frac{4}{\sqrt{3}}\)

S =ah/2 =\(\frac{4}{\sqrt{3}}\).2/2 =\(\frac{4}{\sqrt{3}}\)

2) ABC vuông tại A ( 62+82 =102)

M là điểm chính giữa => AM =CM => OM là trung trực AC => Tam giác OIC vuông tại  I 

 => OI = \(\sqrt{OC^2-IC^2}=\sqrt{5^2-4^2}=3\)

2 tháng 12 2015

câu 2 ; theo đề bài ta có tam giác ABC vuông tại A

VÌ OM là đường kính đi qua dây AC nên OM vuông góc với AC hay OI vuông góc với AC và AI=IC[tính chất đường kính]

Do đó OI song song với AB[cùng vuông góc với AC]

theo định lí ta-lét ta có \(\frac{OI}{AB}=\frac{IC}{AC}\)

mà IC=AC =8/2=4 cm

thay vào giải ra OI=6*4/8=3 cm

còn câu 1 tớ cũng đang định hỏi đây

17 tháng 1 2016

1) ta có góc BAF+góc DAE=90 ĐỘ

     góc DAK +góc DAE=90 ĐỘ

=> góc BAF= góc DAK 

XÉT 2 TAM GIÁC TRÊN THEO TRƯỜNG HỢP G.C.G

=>tam giác ABF=tam giác DAK

==>AK=AF  => tam giác AKF cân tại A

2)XÉT TAM GIÁC VUÔNG KCF CÓ I LÀ TRUNG ĐIỂM CỦA CẠNH HUYỀN KF nên A,F,K thuộc đường tròn đường kính KF (1)

TƯƠNG TỰ VỚI TAM GIÁC VUÔNG AKF ==> A,K,F cùng thuộc đường tròn đường kính KF (2)

TỪ (1) và (2) ==> điều cần chứng minh

3)vì tam giác AKF cân tại A ==> AI là trung tuyến đồng thời là đường cao 

==> AI vuông góc với KF  

DO ĐÓ góc AIF=90 độ

tương tự câu 2 xét vào 2 tam giác vuông AIF và ABF ==>điều cần chứng minh

đợi một tí thí nữa mk giải típ mệt quá

17 tháng 1 2016

sao dài thế