Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua D vẽ DH // với AC ( H thuộc BC )
ta có tam giác BDH ~ tam giác BAC
suy ra BD/DH=AB/AC
áp dụng dlý talét vào tam giác KDH ta có
KE/KD=CE/DH
mà CE=BD
suy ra KE/KD=BD/DH=AB/ACdpcm
Trên BC lấy G sao cho DG // AC
Dễ dàng suy ra \(\Delta BDG\approx\Delta BAC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{DB}{DG}\)(1)
Vì EC // DG nên áp dụng định lý Thalès vào tam giác KDG, ta được:
\(\frac{KE}{KD}=\frac{EC}{DG}\)hay \(\frac{KE}{KD}=\frac{BD}{DG}\)(vì BD = CE (gt)) (2)
Từ (1) và (2) suy ra \(\frac{KE}{KD}=\frac{AB}{AC}\left(đpcm\right)\)
Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33
A B C M K D E
a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)
\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )
Mà : \(MC=MB\) ( Do M là trung điểm của BC )
\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )
b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )
Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)
\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)
Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)
\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)
c) Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :
+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)
+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)
\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )
Nên : E là trung điểm của KD ( đpcm )
d) Ta có : \(KD=10\Rightarrow KE=5\)
Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)
\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)
Vậy : \(BC=16cm\)
-Qua E kẻ đường thẳng song song với AB cắt BC tại I.
-Xét △BDK có: EI//BD (gt)
\(\Rightarrow\dfrac{KD}{KE}=\dfrac{BD}{EI}\) (định lí Ta-let).
-Mà \(BD=CE\) (gt).
\(\Rightarrow\dfrac{KD}{KE}=\dfrac{CE}{EI}\)
-Xét △ABC có: EI//AB (gt)
\(\Rightarrow\dfrac{CE}{AC}=\dfrac{EI}{AB}\)(định lí Ta-let).
\(\Rightarrow\dfrac{CE}{EI}=\dfrac{AC}{AB}\)
Mà \(\dfrac{KD}{KE}=\dfrac{CE}{EI}\) (cmt)
\(\Rightarrow\dfrac{KD}{KE}=\dfrac{AC}{AB}=\dfrac{\dfrac{3}{2}AB}{AB}=\dfrac{3}{2}\)
-Vậy \(\dfrac{KD}{KE}\) không phụ thuộc vào vị trí điểm D,E.