K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMRa) tam giác OAM = tam giác OBMb)AM = BM; OM \(\perp\)ABc) OM là đg trung trực của ABd) Trên tia Ot lấy điểm N. CMR: NA = NB2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMRa) AB // KE             b) góc ABC = góc KEC; BC...
Đọc tiếp

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMR

a) tam giác OAM = tam giác OBM

b)AM = BM; OM \(\perp\)AB

c) OM là đg trung trực của AB

d) Trên tia Ot lấy điểm N. CMR: NA = NB

2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMR

a) AB // KE             b) góc ABC = góc KEC; BC = CE

3.Cho góc nhọn xOy. Trên tia Ox lấy 2 điểm A, C. Trên tia Oy lấy 2 điểm B,D sao cho OA = OB, AC = BD

a)CMR: AD = BC

b) Gọi E là giao điểm AD và BC. CMR tam giác EAC = tam giác EBD

c) CMR: OE là phân giác của góc xOy, OE \(\perp\)CD

4.Cho tam giác ABC có góc B = 90, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA

a) Tính góc BCE                                             b) CMR BE//AC

1
29 tháng 12 2018

câu 1

a) xét tam giác OAM và tam giác OBM có:

OB=OA(gt)

góc BOM= góc MOA(Ot là tia phân giác của góc xOy)

OM:cạnh chung

tam giác OAM= tam giác OBM(c.g.c)

b)vì tam giác OAM= tam giác OBM(câu a)

AM=BM(2 cạnh tương ứng)

góc OMB= góc OMA(2 góc tương ứng)

Mà hóc OMB+góc OMA=180o(kề bù)

góc OMB=góc OMA=180o:2=90o

OM vuông góc với AB

c)vì MA=MB(câu b)

Mà OM vuông góc với AB(câu b)

OM là đường trung trực của AB

d)xét tam giác NBM và tam giác NAM có

AM=BM(câu b)

góc BMN= góc AMN(=90o)

MN:cạnh chung

tam giác NBM= tam giác NAM(c.g.c)

NA=NB(2 cạnh tướng ứng)

6 tháng 9 2017

A B C M N P Q I K D

Trên tia đối của MP lấy điểm D sao cho MP=MD.

Ta có: \(\Delta\)MBP=\(\Delta\)MCD (c.g.c) => BP=CD (2 cạnh tương ứng)

Mà BP=CQ => CD=CQ  => \(\Delta\)DCQ cân tại C => ^CQD= (1800-^DCQ)/2

=> ^MPB=^MDC (2 góc tương ứng) ở vị trí so le trong => AB//CD => ^DCQ=^IAK (Đồng vị) 

M là trung điểm PD, N là trung điểm PQ => MN là đường trung bình của \(\Delta\)PDQ

=> MN//DQ hay IK//DQ => ^CQD=^AKI (Đồng vị) 

 => \(\Delta\)AIK có: ^AKI= (1800-^IAK)/2 = (1800-^DCQ)/2 = ^CQD

=> Tam giác AIK cân tại A (đpcm)

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

28 tháng 12 2017

wefwef

30 tháng 7 2018

này cái bạn nguyễn xuân toàn kia bị gì thế ? họ là hỏi bài mà !

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

1.Cho tam giác cân trên Ab lấy D trên Ac lấy E sao cho AD=EC=DE=CB.   a)Nếu AB>2Bc.tính góc A của tam giác ABC .        b) Nếu AB<BC. tính góc A của tam giác HBC2.Cho tam giác ABC(AB<AC). AD,AM là dường phân giác , đường trung tuyens của tam giác ABC . Đường thẳng qua D và vuông góc với AD cắt AC tại E . So sánh diện tích ADM và CEM3Cho tam giác ABC đặt trên các đoạn kéo dài của AB,AC các đoạn BD=CE. Gọi M là...
Đọc tiếp

1.Cho tam giác cân trên Ab lấy D trên Ac lấy E sao cho AD=EC=DE=CB.   a)Nếu AB>2Bc.tính góc A của tam giác ABC .        b) Nếu AB<BC. tính góc A của tam giác HBC

2.Cho tam giác ABC(AB<AC). AD,AM là dường phân giác , đường trung tuyens của tam giác ABC . Đường thẳng qua D và vuông góc với AD cắt AC tại E . So sánh diện tích ADM và CEM

3Cho tam giác ABC đặt trên các đoạn kéo dài của AB,AC các đoạn BD=CE. Gọi M là trung điể của BC, N là trung điểm DE. CMR MN song song đường phân giác trong của góc A của tam giác ABC

4. cho tứ giác ABCD đường thẳng AB và CD cắt nhau tại E. Gọi F,G là trung điểm của AC , BD . a) CMR diện tích EFG =1/4 diện tích ABCD b) Gọi M là giao điểm AD,BC . Chứng minh Fg đi qua trung điểm ME

5. Cho 2 đường thẳng ox và oy vuông góc với nhau và cắt nhau tại O, Trên ox lấy về hai phía của O hai đọan thẳng OA = 4cm; OB = 2cm. Gọi M là một điểm nằm trên đường trung trực của đọan AB. MA, MB cắt nhau với oy ở C và D. Gọi E là trung điểm của AC, F là trung điểm của BD.

a, CMR: MF + ME =1/2 (AC+BD)

b, đường thẳng CF cắt ox tại P. Chứng minh P là một điểm cố định khi M di chuyển trên đường trung trực của AB.

6.Cho ABC, đường thẳng d cắt AB, AC, trung tuyến AM tại E, F, N. a, CMR:AB/AE+AC/AF=2AM/MN        

b, Giả sử d // BC. Trên tia đối của tia FB lấy K, KN cắt AB tại P, KM cắt AC tại Q. CMR: PQ // BC.

7 Cho 0=<a,b,c=<1 . CMR a^2+b^2+c^2=< 1+a^2b+b^2c+c^2a

                   Mong các bạn giúp minh với , mình cần gấp lắm ^-^

 

0