Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
trong tam giac AHC co \(AH=AC\cdot\sin C=35\cdot\sin50\approx26,8\)
ap dung dl pitago vao AHC ta tinh dc \(HC=AC^2-AH^2\approx22,5\)
tg tu trong tam giac ABH co \(BH=\cot60\cdot26,8\approx15,5\)
\(\Rightarrow BC=BH+CH=38\)
\(\Rightarrow SABC=\frac{1}{2}BC\cdot AH=509,2\)
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
A B C D H E I
a) Mình nghĩ đề đúng phải là: CMR: \(\frac{HB}{HC}=\frac{IB^2}{IA^2}\)
Xét \(\Delta\)BEC có: Đường trung tuyến BA; BA vuông góc CE (tại A) => \(\Delta\)BEC cân tại B
=> ^BEC = ^BCE hay ^IEA = ^ACB. Mà ^ACB = ^IAB (=^HAB) (Cùng phụ ^HAC) nên ^IEA = ^IAB
Xét \(\Delta\)BAI và \(\Delta\)AEI có: ^AIE chung; IAB = ^IEA => \(\Delta\)BAI ~ \(\Delta\)AEI (g.g)
=> \(\frac{IB}{IA}=\frac{AB}{EA}\)=> \(\frac{IB}{IA}=\frac{AB}{AC}\)(Do AE=AC) => \(\frac{IB^2}{IA^2}=\frac{AB^2}{AC^2}\)
Dễ thấy \(\Delta\)BAH ~ \(\Delta\)ACH (g.g) => \(\frac{S_{BAH}}{S_{ACH}}=\frac{AB^2}{AC^2}\)
Do đó: \(\frac{IB^2}{IA^2}=\frac{S_{BAH}}{S_{ACH}}\). Lại có: \(\frac{S_{BAH}}{S_{ACH}}=\frac{HB.AH}{HC.AH}=\frac{HB}{HC}\)=> \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(đpcm).
b) Theo ĐL đường phân giác trong tam giác thì \(\frac{DB}{DC}=\frac{AB}{AC}\Rightarrow\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AC=\frac{4}{3}AB\)
Áp dụng ĐL Pytago cho \(\Delta\)ABC vuông tại A: \(AB^2+AC^2=BC^2\). Thay AC=4/3.AB, ta có:
\(AB^2+\frac{16}{9}AB^2=BC^2=1225\)\(\Rightarrow AB^2=441\) (cm)
Theo hệ thức lượng: \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=12,6\)(cm)
Suy ra: \(HD=DB-BH=15-12,6=2,4\); \(CH=BC-BH=22,4\)
Mặt khác \(\Delta\)BAI ~ \(\Delta\)AEI (cmt) => \(IA^2=IB.IE\) (1)
\(\Rightarrow IA^2=IB^2+IB.BE=IB^2+IB.BC=IB^2+35.IB\)
Lại có: \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(câu a) nên \(\frac{IB^2}{IB^2+35.IB}=\frac{HB}{HC}=\frac{12,6}{22,4}=\frac{9}{16}\)
Đặt IB=x (x>0) , ta có phương trình sau:
\(\frac{x^2}{x^2+35x}=\frac{9}{16}\Rightarrow9x^2+315x=16x^2\Leftrightarrow7x^2-315x=0\)
\(\Leftrightarrow7x\left(x-45\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=45\end{cases}}\)(loại TH x=0 vì x > 0)
=> \(IB=45\)(cm) => IE = IB + BE = IB + BC = 45 + 35 = 80 (cm). Thế vào (1), ta được:
\(IA^2=45.80\Rightarrow IA=60\)(cm)
Ta sẽ có: \(S_{BAE}=S_{ABC}=\frac{AB.AC}{2}=\frac{AB.\frac{4}{3}AB}{2}=294\)(cm2)
\(S_{ABI}=\frac{BH.AI}{2}=\frac{12,6.60}{2}=378\)(cm2); \(S_{AID}=\frac{HD.AI}{2}=\frac{2,4.60}{2}=72\)(cm2)
Theo t/c diện tích miền đa giác: \(S_{AEID}=S_{BAE}+S_{ABI}+S_{AID}=294+378+72=744\)(cm2)
Vậy \(S_{AEID}=744\)cm2.
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
A B C 4 9
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
A B C H 35 50 o 60 o
Ta có \(CH=AC.cos\widehat{C}=35.cos50^o\)
\(AH=AC.sin\widehat{C}=35.sin50^o\)
\(BH=AH.cot\widehat{B}=35.sin50^o.cot60^o\)
\(\Rightarrow BC=BH+CH=35.cos50^o+35.sin50^o.cot60^o\)
\(\Rightarrow S_{ABC}=\frac{AH.BC}{2}=\frac{35.sin50^o\left(35.cos50^o+35.sin50^o.cot60^o\right)}{2}\)