Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối BN.
Xét tam giác AMN và tam giác ABN có chung đường cao hạ từ đỉnh N xuống cạnh AB và có AM = 1/3AB
=>S AMN = 1/3 S ABN (1)
Xét tam giác ABN và tam giác ABC có chung đường cao hạ từ đỉnh B xuống cạnh AC và có AN = 1/3 AC
=>S ABN = 1/3 S ABC (2)
Từ (1) và (2) ta có :
S AMN = 1/3.1/3 S ABC = 1/9 S ABC
=> S ABC = 9 S AMN
Đáp số: 9 lần
Hai tam giác có chung đường cao hạ từ \(B\)xuống \(AC\)
Mà : \(AN=\frac{1}{3}AC\) ( vì \(NC=\frac{2}{3}AC\) )
\(\Rightarrow S_{ABN}=\frac{1}{3}S_{ABC}\)
* Xét 2 tam giác \(NAM\) và \(NAB\) có :
Chung đường cao hạ từ \(N\)xuống \(AB\)
Mà : \(AM=\frac{1}{3}AB\)
\(\Rightarrow S_{AMN}=\frac{1}{3}S_{ABC}\)
\(S_{AMN}=\frac{1}{3}\times\frac{1}{3}=\frac{1}{9}\) \(S_{ABC}\)
\(\Rightarrow\) \(S_{ABC}\) gấp 9 lần \(S_{AMN}\)
Tham khảo bài sau nha:
https://mathx.vn/hoi-dap-toan-hoc/142778.html
Nối BN.
Xét tam giác AMN và tam giác ABN có chung đường cao hạ từ đỉnh N xuống cạnh AB và có AM = 1/3AB
=>S AMN = 1/3 S ABN (1)
Xét tam giác ABN và tam giác ABC có chung đường cao hạ từ đỉnh B xuống cạnh AC và có AN = 1/3 AC
=>S ABN = 1/3 S ABC (2)
Từ (1) và (2) ta có : S AMN = 1/3.1/3 S ABC = 1/9 S ABC
=> S ABC = 9 S AMN
Đáp số: 9 lần
AB=BM
=>B là trung điểm của AM
=>AB=1/2AM
=>\(S_{AMC}=2\cdot S_{ABC}=2\cdot24=48\left(cm^2\right)\)
\(AN=3\cdot NC\)
=>\(NC=\dfrac{1}{3}\cdot AN\)
Ta có: AN+NC=AC
=>\(AC=\dfrac{1}{3}AN+AN=\dfrac{4}{3}AN\)
=>\(AN=\dfrac{3}{4}AC\)
=>\(S_{AMN}=\dfrac{3}{4}\cdot S_{AMC}=\dfrac{3}{4}\cdot48=36\left(cm^2\right)\)