K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alphasin5α2sinα(cos4α+cos2α)=sin5α2sinα.cos4α2sinα.cos2α

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)=sin5α(sin5αsin3α)(sin3αsinα)

=\sin \alpha .=sinα.

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alphasin5α2sinα(cos4α+cos2α)=sinα

1 tháng 6 2021

2.

ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)

\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)

\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))

Nếu \(y=1\), khi đó:

\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)

Phương trình này vô nghiệm

Nếu \(y=2x-1\), khi đó:

\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))

\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)

Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)

Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\)\(2x>0\)

\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)

Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)

Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: \({\left( {\sin \alpha  + \cos \alpha } \right)^2} = {\sin ^2}\alpha  + 2\sin \alpha \cos \alpha  + {\cos ^2}\alpha  = 1 + \sin 2\alpha \;\)

b) \({\cos ^4}\alpha  - {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) = \cos 2\alpha \;\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,\sqrt{2}sin\left(\alpha+\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha cos\dfrac{\pi}{4}+cos\alpha sin\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha\cdot\dfrac{\sqrt{2}}{2}+cos\alpha\cdot\dfrac{\sqrt{2}}{2}\right)-cos\alpha\\ =\sqrt{2}\cdot sin\alpha\cdot\dfrac{\sqrt{2}}{2}+\sqrt{2}\cdot cos\alpha\cdot\dfrac{\sqrt{2}}{2}-cos\alpha\\ =sin\alpha+cos\alpha-cos\alpha\\ =sin\alpha\)

\(b,\left(cos\alpha+sin\alpha\right)^2-sin2\alpha\\ =cos^2\alpha+sin^2\alpha=2cos\alpha sin\alpha-2sin\alpha cos\alpha\\ =sin^2\alpha+cos^2\alpha\\ =1\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(\cos \left( {\pi  - \alpha } \right) =  - \cos \alpha \)

Vậy ta chọn đáp án B

24 tháng 7 2021

\(cos\left(\alpha-\dfrac{\pi}{2}\right)=sin\alpha\)

\(\Leftrightarrow cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\left(\dfrac{\pi}{2}-\alpha\right)\)

\(\Leftrightarrow\alpha\in R\)

29 tháng 10 2023

    \(cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\alpha\cdot cos\dfrac{\pi}{2}+sin\alpha\cdot sin\dfrac{\pi}{2}\)

\(=cos\alpha\cdot0+sin\alpha\cdot1=sin\alpha\)

\(\Rightarrow\) Đẳng thức được chứng minh.

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

\(\cos \alpha  =  - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}}  =  - \frac{{12}}{{13}}\) (vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\))

\(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)

\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha  + \sin \frac{\pi }{4}sin\alpha  = \frac{{ - 17\sqrt 2 }}{{26}}\)

12 tháng 9 2023

1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)

\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)

\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)

1: \(cota=\sqrt{5}\)

=>\(cosa=\sqrt{5}\cdot sina\)

\(1+cot^2a=\dfrac{1}{sin^2a}\)

=>\(\dfrac{1}{sin^2a}=1+5=6\)

=>\(sin^2a=\dfrac{1}{6}\)

\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)

\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)

2: tan a=3

=>sin a=3*cosa 

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)

\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)

\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)

\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)