K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

1)\(\Delta\)ABC có E là trung điểm của AB, D là trung điểm của AC nên ED là đường trung bình của tam giác => ED//BC

Tứ giác EDCB có ED//BC nên là hình thang (đpcm)

2) Hình thang EDCB có M, N lần lượt là trung điểm của BE và CD nên MN là đường trung bình của hình thang => MN // ED hay \(\hept{\begin{cases}NK//ED\\MI//ED\end{cases}}\)

\(\Delta\)BED có M là trung điểm của BE và MI//ED nên I là trung điểm của BD

Tương tự ta suy ra được K là trung điểm của CE

c) Ta có: IK = IN  - KN = 1/2BC - 1/2ED = \(\frac{BC-ED}{2}=\frac{BC-\frac{BC}{2}}{2}=\frac{\frac{BC}{2}}{2}=\frac{BC}{4}\)

\(KN=MI=\frac{ED}{2}=\frac{\frac{BC}{2}}{2}=\frac{BC}{4}\)

Từ đó suy ra MI = IK = KN (đpcm)

31 tháng 8 2017

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

12 tháng 9 2017

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha

20 tháng 9 2016

dễ

20 tháng 9 2016

thế thì lm đi

13 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong ∆ ABC ta có: E là trung điểm của cạnh AB

D là trung điểm của cạnh AC

Nên ED là đường trung bình của  ∆ ABC

⇒ ED // BC và ED = 1/2 BC

(tính chất đường trung bình của tam giác)

+) Tứ giác BCDE có ED // BC nên BCDE là hình thang.

Trong hình thang BCDE, ta có: BC // DE

M là trung điểm cạnh bên BE

N là trung điểm cạnh bên CD

Nên MN là đường trung hình hình thang BCDE ⇒ MN // DE

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

(tính chất đường trung bình hình thang)

Trong  ∆ BED, ta có: M là trung điểm BE

MI // DE

Suy ra: MI là đường trung bình của  ∆ BED

⇒ MI = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

Trong  ∆ CED ta có: N là trung điểm CD

NK // DE

Suy ra: NK là đường trung bình của  ∆ CED

⇒ NK = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

IK = MN – (MI + NK) = 3/4 BC – (1/4 BC + 1/4 BC) = 1/4 BC

⇒ MI = IK = KN = 1/4 BC

6 tháng 9 2017

A C B E D I K M N

Hình trên, đặt BC = a

Vì \(\Delta ABC\)có \(AE=EB;AD=DC\)nên \(ED\)là đường trung bình . Do đó ED song song BC và \(ED=\frac{BC}{2}=\frac{a}{2}\)

Do MN là đường trung bình của hình thang BEDC nên MN song song ED song song BC

\(\Delta BED\)có \(BM=ME;MI\)song song \(ED\)nên \(MI\)là đường trung bình , \(MI=\frac{ED}{2}=\frac{a}{4}\)

\(\Delta CED\)có \(CN=ND;NK\)song song \(ED\)nên \(NK\)là đường trung bình ,\(NK=\frac{ED}{2}=\frac{a}{4}\)

\(\Delta EBC\)có \(EM=MB;MK\)song song \(BC\)nên \(MK\)là đường trung bình ,\(MK=\frac{BC}{2}=\frac{a}{2}\)

\(\Rightarrow IK=MK-MI=\frac{a}{2}-\frac{a}{4}=\frac{a}{4}\)

Vậy \(MI=IK=KN\)

21 tháng 8 2017

A B C E D M N I K

Xét tg ABC có: E là t/đ của AB (gt) và D là t/đ của AC (gt)

=> DE là đg trung bình của tg ABC => ED = 1/2. BC  ; ED//BC

Xét hthang EDCB(ED//BC) có: M là t/đ của BE (gt) và N là t/đ của DC(gt)

=> MN là đg trung bình của hthang EDCB => MN//DE//BC ;  MN = 1/2.(DE+BC) . MÀ DE=1/2.BC (cmt)=> MN=3/2 . DE

=> MI+IK+KN =3/2  . DE  (1)

xét tg BDE có: M là t/đ của BE(gt) ; MI//ED ( vì I thuộc MN ; MN//DE) => I là r/đ của BD => MI là đg trung bình của tg BDE

=> MI =1/2.DE   (2)

 C/m tương tự ta đc: KN là đg trung bình của tg CDE => KN= 1/2.DE  (3)

Từ (2) ,(3)=> MI=KN =1/2.DE  (*)

Thay (2),(3) vào (1) ta đc:  1/2. DE  +IK   +1/2.  DE  =3/2.  DE   =>  IK =1/2. DE   (**)

Từ (*),(**)=> MI=IK=KN    (đpcm)

16 tháng 8 2018

Bạn có thể giải thích cho mình vì sao = 1/2.(DE+BC)Mà DE = 1/2BC => MN =3/2  là sao vậy mình không hiểu đoạn đó