K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

a) Giả sử ∆x là số gia của số đối tại x0 = 1. Ta có:

∆y = f(1 + ∆x) - f(1) = (1 + ∆x)2 + (1 + ∆x) - (12+ 1) = 3∆x + (∆x)2;

= 3 + ∆x; = (3 + ∆x) = 3.

Vậy f'(1) = 3.

b) Giả sử ∆x là số gia của số đối tại x0 = 2. Ta có:

∆y = f(2 + ∆x) - f(2) = - = - ;

= - ; = - = - .

Vậy f'(2) = - .

c) Giả sử ∆x là số gia của số đối tại x0 = 0.Ta có:

∆y = f(∆x) - f(0) = - ( -1) = ;

= ; = = -2.

Vậy f'(0) = -2

4 tháng 4 2017

Ý kiến đúng

Giả sử ngược lại y = f(x) + g(x) liên tục tại x0. Đặt h(x) = f(x) + g(x). Ta có g(x) = h(x) – f(x).

Vì y = h(x) và y = f(x) liên tục tại x0 nên hiệu của chúng là hàm số y = g(x) phải liên tục tại x0. Điều này trái với giả thiết là y = g(x) không liên tục tại x0.

4 tháng 4 2017

a) Ta có ham-so-lien-tuc = 22 +2.2 +4 = 12.

ham-so-lien-tucnên hàm số y = g(x) gián đoạn tại x0 = 2.

b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12

14 tháng 4 2017

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).

28 tháng 5 2020

khi x \(\ne\)2 vs khi x = 2, sorry mk ghi nhầm

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 8 2023

Thịnh ơi, có gì mấy câu trả lời SGK em giúp anh trình bày đầy đủ và làm đẹp nhé, có Latex đầy đủ á. Mình làm hướng đến cộng đồng, em giúp hoc24 nhé!

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)     Ta có: \(\Delta x = x - {x_0},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) + g(x) - f({x_0}) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - g\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\)

b)    \(h'({x_0})\) = \(f'({x_0}) + g'({x_0})\)

9 tháng 4 2017

a) Giả sử ∆x là số gia của số đối tại x0= 1. Ta có:

∆y = f(1 + ∆x) - f(1) = 7 + (1 + ∆x) - (1 + ∆x)2 - (7 + 1 - 12) = -(∆x)2 - ∆x ;

= - ∆x - 1 ; = (- ∆x - 1) = -1.

Vậy f'(1) = -1.

b) Giả sử ∆x là số gia của số đối tại x0= 2. Ta có:

∆y = f(2 + ∆x) - f(2) = (2 + ∆x)3 - 2(2 + ∆x) + 1 - (23 - 2.2 + 1) = (∆x)3 + 6(∆x)2 + 10∆x;

= (∆x)2 + 6∆x + 10; = [(∆x)2 + 6∆x + 10] = 10.

Vậy f'(2) = 10.


\(\lim\limits_{x->2^-}=\dfrac{2^2-6\cdot2+8}{\sqrt{3\cdot2+2}-2}=0\)

\(\lim\limits_{x->2^+}=\dfrac{2+8}{2-1}=10< >0\)

=>f(x) không liên tục tại x=2