Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow\frac{a}{c}.\frac{c}{b}=k^2\)\(\Rightarrow\frac{a}{b}=k^2\)(1)
Mặt khác: \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2=k^2\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=k^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}=k^2\)(2)
Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{a^2+c^2}{c^2+b^2}\left(=k^2\right)\)
a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4
\(\Rightarrow-6+3x=12x-4\)
\(\Rightarrow-2=9x\)
\(\Rightarrow x=\frac{-2}{9}\)
bài b cx tương tự nha
ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)
\(\Rightarrowđpcm\)
Ko biết .com ^_^
969696969696969696969696969696969696969696969696969696969696969696969696969696966969969696969999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999969696969696969
F3
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}và\frac{a}{c}=\frac{3b}{3d}=\frac{a+3b}{c+3d}\)
\(\Rightarrow\frac{a-2b}{c-2d}=\frac{a+3b}{c+3d}\left(=\frac{a}{c}\right)\)
2/ b2 = ac => \(\frac{a}{b}=\frac{b}{c}\) và c2 = bd\(\frac{c}{d}=\frac{b}{c}\) =>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}=k^3\) (1)
Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Áp dụng tính chất tỉ lê thức ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)(2)
Từ (1) và (2) ta được: \(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(=k^3\right)\)
đừng học kiểu đối phó bạn, ko hiểu tới đó cô sẽ giảng mà. cô có ăn thịt bạn đâu mà lo :)
Ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
Ta lại có:
\(\frac{a^2+c^2}{b^2+c^2}\Rightarrow\frac{a^2+ab}{b^2+ab}\Rightarrow\frac{a.\left(a+b\right)}{b.\left(a+b\right)}=\frac{a}{b}\)
Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a}{b}=\frac{a^2+c^2}{c^2+b^2}\)