K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

1/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1=>a=b=c\)

2/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{1}{3}\)

3/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{b}=\frac{b-2011c}{c}=\frac{2012c}{a}=\frac{a+b+c}{b+c+a}=1=>a=b\)

6 tháng 1 2017

ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\frac{1}{c}\times2=\frac{1}{a}+\frac{1}{b}\)

\(=\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)

\(=\frac{2}{c}=\frac{b+a}{ab}\)

= \(c\left(b+a\right)=ab\times2\)

= cb +ca = ab+ab

= ab - cb = ac-ab

\(=b\left(a-c\right)=a\left(c-b\right)\)

= \(\frac{a}{b}=\frac{a-c}{c-b}\)

6 tháng 1 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)

\(\frac{1}{c}=\frac{a+b}{2ab}\)

\(2ab=c\left(a+b\right)\)

\(ab+ab=ac+bc\)

\(ab-bc=ac-ab\)

\(b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

21 tháng 10 2020

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)( đpcm )

b) Nếu \(a+b+c=0\)\(\Rightarrow b+c=-a\)

\(\Rightarrow A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a}{-a}=-1\)

Nếu \(a+b+c\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

21 tháng 10 2020

a) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\b=kc\\c=kd\end{cases}}\)

Ta có : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{kb+kc+kd}{b+c+d}\right)^3=\left(\frac{k\left(b+c+d\right)}{b+c+d}\right)^3\)

21 tháng 12 2019

Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

\(\Rightarrow2ab=c.\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

18 tháng 8 2020

đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)

\(\Leftrightarrow a=bk;c=dk\)

\(\frac{a}{a-b}=\frac{bk}{bk-b}\)

\(=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)

\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

18 tháng 8 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

=>\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)

=> \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)( đpcm )

18 tháng 11 2016

\(\frac{a}{2b}\)=\(\frac{b}{2c}\) =\(\frac{c}{2d}\) =\(\frac{d}{2a}\)=\(\frac{a+b+c+d}{2a+2b+2c+2d}\)=\(\frac{a+b+c+d}{2\left(a+b+c+d\right)}\)=\(\frac{1}{2}\)

quên rùi............................

đáp số =2

1 tháng 3 2018

đáp số = 2

23 tháng 11 2019

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

26 tháng 5 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{\left(2b+c-a\right)+\left(2c-b+a\right)+\left(2a+b-c\right)}{a+b+c}\)\(=\frac{2a+2c+2a}{a+b+c}=2\) 

vậy : \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b+c-3a=0\Rightarrow3a-2c=c\Rightarrow3a-c=2b\)

         \(\frac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c+a-3b=0\Rightarrow3b-2c=a\Rightarrow3b-a=2c\)

         \(\frac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a+b-3c=0\Rightarrow3c-2a=b\Rightarrow3c-b=2a\)

Vậy \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)