Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 : \(f\left(x\right)=ax^2+bx+c=0\)
Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý
Giả sử x=0;x=1;x=-1 là 3 giá trị đó.
Ta có:f(0)=a.02+b.0+c=c
f(1)=a.12+b.1+c=a+b+c
f(-1)=a.(-1)2+b.(-1)+c=a-b+c
Do đó c=0;a+b+c=0;a-b+c=0
=>a-b=0=>a=b
và a+b=0=>a=b=0
Vậy a=b=c=0
\(1,\text{Ta có: với a=1;b=-6;c=11 thì }P\left(x\right)=x^2-6x+11=\left(x-3\right)^2+2>0\Rightarrow\text{vô nghiệm}\)
\(2,\text{ với: x=3}\Rightarrow f\left(3\right)+5f\left(\frac{1}{3}\right)=27\)
\(với:x=\frac{1}{3}\text{ thì:}f\left(\frac{1}{3}\right)+5f\left(3\right)=\frac{1}{27}\)
\(\Rightarrow6\left(f\left(3\right)+f\left(\frac{1}{3}\right)\right)=\frac{730}{27}\Leftrightarrow f\left(3\right)+f\left(\frac{1}{3}\right)=\frac{365}{81}\Rightarrow4f\left(3\right)=\frac{-362}{81}\Rightarrow f\left(3\right)=\frac{-362}{324}\)
2) Ta có: \(\frac{x_1}{y_2}=\frac{x_2}{y_1}\Rightarrow\frac{x_1^2}{y_2^2}=\frac{x_2^2}{y_1^2}=\frac{x_1^2+x_2^2}{y_1^2+y_2^2}=\frac{2^2+3^2}{52}=\frac{1}{4}\)
\(\Rightarrow\frac{x_1^2}{y_2^2}=\frac{1}{4}\Rightarrow y_2^2=16\Rightarrow\)\(\orbr{\begin{cases}y_2=-4\\y_2=4\end{cases}\Rightarrow}\)\(\orbr{\begin{cases}y_1=-6\\y_1=6\end{cases}}\)
=> KL....
I2x+3I=x+2
TH1: Nếu \(x\le-\frac{3}{2}\)(*), =>I2x+3I=-2x-3
PT: -2x-3=x+2 <=> x=\(-\frac{5}{3}\)(tm (*))
TH2: Nếu \(x>-\frac{3}{2}\)(**), => I2x+3I=2x+3
PT: 2x+3=x+2 => x=-1 (tm (**))
Vậy x=...
+ A ( x ) = ax2 + bx + c
=> A(0) = a . 02 + b.0 + c = c mà A(0) = 4 => c = 4
+ A ( x ) = ax2 + bx + c
=> A ( 1 ) = a . 12 + b.1 + c = a + b + c hay A ( 1 ) = a + b + 4 mà A(1) = 9 => a + b = 5
+ A ( x ) = ax2 + bx + c
=> A ( 2 ) = a . 22 + b . 2 + c = 4a + 2b + c hay A ( 2 ) = 4a + 2b + 4 mà A ( 2 ) = 14 => 4a + 2b = 10
4a + 2b = 2a + 2a + 2b = 2a + 10 mà 4a + 2b = 10 => 2a + 10 = 14 => a = 2 => b = 5 - 2 = 3
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Câu 2:
a: THeo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=-11\\2a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)
b: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=5\\4a-2b+c=21\\a-b+c=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\4a-2b=16\\a-b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\a=3\\b=-2\end{matrix}\right.\)
2/ Cho \(A\left(x\right)=ax^2+bx+c\)
Ta có A (1) = a + b + c = 6
và a, b, c tỉ lệ thuận với 3, 2, 1
=> \(\frac{a}{3}=\frac{b}{2}=c\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:\(\frac{a}{3}=\frac{b}{2}=c=\frac{a+b+c}{3+2+1}=\frac{6}{6}=1\)
=> \(\hept{\begin{cases}a=3\\b=2\\c=1\end{cases}}\)
mk đăng câu hỏi r mới bt là làm đc bài này ^^