K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

a. thay m=1 vào pt(1): \(x^2-2.2x+2-4=0\)

<=>\(x^2-4x-2=0\)

\(\Delta'=\left(-2\right)^2-1.\left(-2\right)=4+2=6>0\)

=>\(x_1=-\left(-2\right)+\sqrt{6}=2+\sqrt{6};x_2=2-\sqrt{6}\)

Vậy,,,

b, \(\Delta'=\left[-\left(m+1\right)\right]^2-1.\left(2m-4\right)=m^2+2m+1-2m+4=m^2+5\)

Để pt(1) có 2 nghiệm phân biệt x1,x2 <=>\(\Delta'>0\Leftrightarrow m^2+5>0\) (luôn đúng)

Theo hệ thức vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-4\end{cases}}\)

Theo bài ra ta co;\(\frac{1}{x_1}+\frac{1}{x_2}=2\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=2\Leftrightarrow\frac{2m+2}{2m-4}=2\)

\(\Leftrightarrow2m+2=4m-8\Leftrightarrow2m=10\Leftrightarrow m=5\)

6 tháng 7 2017

Để PT có 2 nghiệm phân biệt thì

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow m< 0\)

Theo vi et ta có:

\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)

Theo đề bài thì

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)

Với m < 0  thì VP > 0 

Vậy không tồn tại m để thỏa bài toán.

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

20 tháng 3 2021

    a) Thay m = -12 vào phương trình ta có 

                    x2 + 5x – 14 = 0 

           <=>  x2 + 7x  - 2x  - 14 = 0 

           <=>  (x2 + 7x ) - (2x  + 14) = 0

           <=>   x(x + 7) - 2(x  +  7) = 0

           <=>   (x  -  2)( x  +  7)  =  0

           <=>   x - 2 = 0    hoặc  x  +  7  =  0

           <=>   x  =  2        hoặc   x  =  -7

          Vậy tập nghiệm của phương trình là  S={-7  ; 2  }

                   Em chỉ iết làm câu này câu sau em xin lỗi!

20 tháng 3 2021

a, Thay m =-12 vào phương trình trên ta được : 

\(PT\Leftrightarrow x^2+5x-14=0\)

Ta có : \(\Delta=25-4\left(-14\right)=25+56=81>0\)

Vậy ta có 2 nghiệm phân biệt 

\(x_1=\frac{-5-9}{2}=-7;x_2=\frac{-5+9}{2}=2\)

Vậy với m = -12 thì x = -7 ; 2 

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{-5}{2}\\x_1x_2=\frac{c}{a}=\frac{m-2}{2}\end{cases}}\)

Ta có : \(\frac{1}{x_1-1}+\frac{1}{x_2-1}=2\)ĐK : \(x_1\ne1;x_2\ne1\)

Gọi \(x_1=a;x_2=b\)( em đặt cho dễ viết thôi nhé )

\(\frac{1}{a-1}+\frac{1}{b-1}=2\)

\(\Leftrightarrow\frac{b-1+a-1}{\left(a-1\right)\left(b-1\right)}=\frac{2\left(a-1\right)\left(b-1\right)}{\left(a-1\right)\left(b-1\right)}\)

\(\Rightarrow a+b-2=2\left(ab-a-b+1\right)\)

\(\Leftrightarrow a+b-2=2\left[ab-\left(a+b\right)+1\right]\)

hay \(-\frac{5}{2}-2=2\left(\frac{m-2}{2}+\frac{5}{2}+1\right)\)

\(\Leftrightarrow\frac{-9}{2}=2\left(\frac{m+5}{2}\right)\Leftrightarrow\frac{-9}{2}=\frac{2m+10}{2}\)

\(\Rightarrow2m+10=-9\Leftrightarrow m=-\frac{19}{2}\)

2 tháng 5 2016

dễ lắm bạn mình cm pt đã cho luôn có hai nghiệm pb với mọi m sau đó áp dụng viet tính tích và tổng hai nghiệm  rồi quy đồng hệ thức đứa về dạng tích tổng rồi thay vô là dc