Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Khi bớt ở cả tử số và mẫu số của một phân số thì hiệu giữa mẫu số và tử số của phân số đó không thay đổi. Vậy hiệu giữa mẫu số và tử số là:
47 - 23 = 24
Coi tử số mới là 7 phần bằng nhau thì mẫu số mới là 13 phần như thế, hiệu là 24.
Hiệu số phần bằng nhau là:
13 - 7 = 6 (phần)
Giá trị 1 phần là:
24 : 6 = 4
Tử số mới là:
4 . 7 = 28
Số nguyên cần tìm là:
23 - 28 = -5
Đáp số: -5
a) \(\frac{a}{b}=\frac{a+4}{b+10}\)
\(\Leftrightarrow a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow ab+10a=ba+4b\)
\(\Leftrightarrow10a=4b\)
\(\Leftrightarrow\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
Hiệu của mẫu và tử là: 47-23=24
Coi tử là 7 phần, mẫu là 13 phần.
Hiệu số phần bằng nhau là: 13-7=6
Tử số mới là: 24:6x7=28
Số nguyên đó là: 28-24=4
\(a)\) Ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}=\frac{a-a-4}{b-b-10}=\frac{-4}{-10}=\frac{2}{5}\)
Vậy phân số \(\frac{a}{b}=\frac{2}{5}\)
\(b)\) Ta có :
\(\frac{2a}{b}=\frac{a+b}{b+b}\)
\(\Leftrightarrow\)\(\frac{a}{b}=\frac{a+b}{2b}:2\)
\(\Leftrightarrow\)\(\frac{a}{b}=\frac{a+b}{4b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{a+b}{4b}=\frac{a-a-b}{b-4b}=\frac{-b}{-3b}=\frac{1}{3}\)
Vậy phân số \(\frac{a}{b}=\frac{1}{3}\)
Ta có:
\(\frac{a+6}{b+14}=\frac{3}{7}\)
\(7\left(a+6\right)=3\left(b+14\right)\)
\(\Rightarrow7a+42=3b+42\)
\(\Rightarrow7a=3b\)
\(\Rightarrow\frac{a}{b}=\frac{3}{7}\)
Bài 1:
Giải:
Gọi số nguyên đó là a ( \(a\in Z\) )
Theo bài ra ta có:
\(\frac{23-a}{47-a}=\frac{7}{13}\Rightarrow\left(23-a\right).13=7.\left(47-a\right)\)
\(\Rightarrow299-13a=329-7a\)
\(\Rightarrow13a-7a=299-329\)
\(\Rightarrow6a=-30\)
\(\Rightarrow a=-5\)
Vậy số cần tìm là -5