K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

ok con de


a) Do AE // BC (gt), theo định lí Ta - let, ta có :

            OE/OB   = OA/OC      (1)

Do BF // AD (gt), theo định lí Ta - let, ta có :

            OB/OD   = OA/OC (2)

Từ (1) và (2),suy ra  DECF là hình thang cân.

b)Ta có EF// AB//DC (gt)

AB=5cm;CD=10cm(gt

Đoạn này chả biết nói sao cho dễ hiểu,nhưng mình làm ra thì nó bằng :EF/AB=EF/CD=1/2(chẳng biết đúng hay sai đâu T.T)

Gọi H là giao điểm của AC và BD 

Vì AF//BC 

Áp dụng hệ quả Talet : 

=> HF/HB = AH/HC 

Ta có : HE//HA = HB/HD 

Mà AB//CD 

=> HB/HA = HA/HC 

=> HE /HA = HF/HB 

=> EF//AB

=> EDCF là hình thang 

Vì ABCD là hình thang cân 

=> ADC = BCD 

AD = BC 

Xét ∆ACD và ∆BDC ta có : 

DC chung 

AD = BC 

ADC = BCD 

=> ∆ACD = ∆BDC (c.g.c)

=> BDC = ACD 

=> EDCF là hình thang cân (dpcm)

b) Kéo dài EF sao cho lần lượt cắt AD tại G và BC tại O 

Vì EF//DC (cmt)

=> GO//DC 

Mà DC//AB 

=> AB//GO//DC

=> GO là đường trung bình hình thang ABCD 

=> GO = \(\frac{5\:+\:10}{2}=\:7,5\)cm

Mà GO là đường trung bình hình thang 

=> G là trung điểm AD ; O là trung điểm BC 

Vì GO//AB 

=> GE//AB 

Mà G là trung điểm AD

=> GE là đường trung bình ∆ABD 

=> GE = \(\frac{5}{2}\)= 3,5 cm

Vì GO //AB

=> FO//AB 

Mà O là trung điểm BC 

=> FO là đường trung bình ∆ABC 

=> FO = \(\frac{5}{2}=\:3,5\)cm

=> EF = 7,5 - 3,5 - 3,5 = 0,5cm

a:Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔDAB có 

M là trung điểm của AD

ME//AB

Do đó: E là trung điểm của BD

Xét ΔABC có 

N là trung điểm của BC

NF//AB

Do đó: F là trung điểm của AC

24 tháng 10 2021

SGK k để lm cảnh, lên Tech12 hoặc Vietjack

24 tháng 10 2021

a: Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔADC có 

M là trung điểm của AD

MF//DC

Do đó: F là trung điểm của AC

Xét ΔBDC có 

N là trung điểm của BC

NE//DC

Do đó: E là trung điểm của BD

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm )