K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Câu 1:

\(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)\(BA=\frac{1}{3}CD\Rightarrow \overrightarrow{BA}=\frac{1}{3}\overrightarrow{CD}\)

Để $B,M,D$ thẳng hàng \(\Leftrightarrow \exists k\in\mathbb{R}|\overrightarrow{BM}=k\overrightarrow{MD}\)

\(\Leftrightarrow \overrightarrow{BA}+\overrightarrow{AM}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{CD}+x\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}(\overrightarrow{MC}+\overrightarrow{CD})+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{MD}+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow (x-\frac{1}{3})\overrightarrow{MC}=(k-\frac{1}{3})\overrightarrow{MD}\)

\(\overrightarrow{MC}; \overrightarrow{MD}\) không phải 2 vecto cùng phương nên điều trên chỉ xảy ra khi \(x-\frac{1}{3}=k-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Bài 2:
Lấy điểm $I(a,b)$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow (1-a, 1-b)-2(4-a, 3-b)+3(2-a, -2-b)=(0,0)\)

\(\Leftrightarrow (-1-2a,-11-2b)=(0,0)\Rightarrow a=-\frac{1}{2}; b=\frac{-11}{2}\)

Vậy \(I(-\frac{1}{2}; -\frac{11}{2})\)

Ta có:

\(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|=|\overrightarrow{MI}+\overrightarrow{IA}-2(\overrightarrow{MI}+\overrightarrow{IB})+3(\overrightarrow{MI}+\overrightarrow{IC})|\)

\(|2\overrightarrow{MI}+(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC})|=2|\overrightarrow{MI}|\)

Để \(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|\) min thì \(|\overrightarrow{MI}|\) min. Điều này xảy ra khi $M$ là hình chiếu của $I$ trên $Ox$

Do đó \(M=(-\frac{1}{2};0)\)

6 tháng 9 2021
1/2bóng đỏ 1/3 số bóng xanh tìm bóng vàng
NV
6 tháng 11 2019

Gọi \(M\left(x;0\right)\Rightarrow\overrightarrow{MA}\left(2-x;5\right)\) ; \(\overrightarrow{MB}=\left(-1-x;8\right)\); \(\overrightarrow{MC}=\left(4-x;-3\right)\)

a/ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(5-3x;10\right)\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(5-3x\right)^2+10^2}\ge10\)

\(T_{min}=10\) khi \(5-3x=0\Rightarrow x=\frac{5}{3}\Rightarrow M\left(\frac{5}{3};0\right)\)

b/ \(2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}=\left(17-4x;-7\right)\)

\(\Rightarrow A=\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|=\sqrt{\left(17-4x\right)^2+\left(-7\right)^2}\ge7\)

\(A_{min}=7\) khi \(17-4x=0\Rightarrow x=\frac{17}{4}\Rightarrow M\left(\frac{17}{4};0\right)\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng