B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)
a. Tìm m để (1) có 2 nghiệm dương
b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên
B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)
a. Tìm m để (1) có 2 nghiệm trái dấu
b. Tìm m để nghiệm này bằng bình phương nghiệm kia
B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN
B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)
B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)
a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)
b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi
B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)
B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)
a. tìm m để (1) có nghiệm
b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)
em mới lớp 8 nên làm đc mỗi câu 2 :(
2. pt có nghiệm <=> Δ' ≥ 0
<=> ( -m - 2 )2 - ( m2 + 4m - 12 ) ≥ 0
<=> m2 + 4m + 4 - m2 - 4m + 12 ≥ 0
<=> 16 ≥ 0 ( đúng với mọi m )
Vậy với mọi m thì pt có nghiệm
Khi đó theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=m^2+4m-12\end{matrix}\right.\)
| x1 + x2 | ≤ 6
<=> | x1 + x2 |2 ≤ 36
<=> ( x1 + x2 )2 ≤ 36
<=> x12 + 2x1x2 + x22 ≤ 36
<=> ( x1 + x2 )2 - 2x1x2 ≤ 36
<=> ( 2m + 4 )2 - 2( m2 + 4m - 12 ) ≤ 36
<=> 4m2 + 16m + 16 - 2m2 - 8m + 24 ≤ 36
<=> 2m2 + 8m - 4 ≤ 0
<=> m2 + 4m - 2 ≤ 0
<=> ( m + 2 )2 - 6 ≤ 0
<=> ( m + 2 - √6 )( m + 2 + √6 ) ≤ 0
<=> -2 - √6 ≤ m ≤ - 2 + √6
Vậy ...