K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2019

Câu 1:

\(\sqrt{a}+\sqrt{b}=1\Leftrightarrow a+b+2\sqrt{ab}=1\Leftrightarrow a+b=1-2\sqrt{ab}\)

BĐT cần chứng minh tương đương:

\(ab\left(1-2\sqrt{ab}\right)^2\le\frac{1}{64}\Leftrightarrow\sqrt{ab}\left(1-2\sqrt{ab}\right)\le\frac{1}{8}\)

Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\) ta có:

\(\frac{1}{2}.2\sqrt{ab}\left(1-2\sqrt{ab}\right)\le\frac{1}{2}\frac{\left(2\sqrt{ab}+1-2\sqrt{ab}\right)^2}{4}=\frac{1}{8}\) (đpcm)

Dấu "=" xảy ra khi \(2\sqrt{ab}=1-2\sqrt{ab}\Rightarrow ab=\frac{1}{16}\Rightarrow a=b=\frac{1}{4}\)

Câu 2:

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=1\)

\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2-2xy\)

\(Q=2\left[\left(x+y\right)^2-3xy\right]+4-2xy\)

\(Q=2\left(4-3xy\right)+4-2xy\)

\(Q=12-8xy\ge12-8=4\)

\(\Rightarrow Q_{min}=4\) khi \(x=y=1\)

21 tháng 10 2015

x^2+y=y^2+x <=>(x-y)(x+y)=x-y <=>x+y=1=>(x+y)^2=1<=>x^2+y^2=1-xy
thay vào bt ta đc P= -1

18 tháng 7 2016

1) \(E^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)-4xy}{2\left(x^2+y^2\right)+4xy}=\frac{5xy-4xy}{5xy+4xy}=\frac{xy}{9xy}=\frac{1}{9}\)

\(\Rightarrow E=\frac{1}{3}\)(vì x>y>0)

2) Ta có \(x+y+z=0\Rightarrow x+y=1-z\)

Lại có : \(1=\left(x+y+z\right)^2=1+2\left(xy+yz+xz\right)\Rightarrow2xy+2yz+2xz=0\Rightarrow2xy=-2z\left(x+y\right)=-2z\left(1-z\right)\)Thay vào \(x^2+y^2+z^2=1\) được : 

\(\left(x+y\right)^2-2xy+z^2=1\)\(\Leftrightarrow\left(1-z\right)^2-2z\left(1-z\right)+z^2=1\Leftrightarrow4z^2-4z=0\Leftrightarrow z\left(z-1\right)=0\Leftrightarrow\orbr{\begin{cases}z=0\\z=1\end{cases}}\)

Với z = 0 => x + y = 1 và x2+y2 = 1 => x = 0 , y = 1 hoặc x = 1 , y =0

=> A = 1

Tương tự với z = 1 , ta cũng có x = 0 , y = 0 => A = 1

4 tháng 10 2019

ai làm giúp mk vs ạ

4 tháng 10 2019

cái dề bài câu b : P= là ở trên í ạ

3 tháng 10 2019

\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge2+2+2=6\)(BDT cô-si)

Dấu '=' xảy ra khi x=y=z=1 rồi thay vào tính dc P=3

3 tháng 10 2019

\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\\z=\pm1\end{cases}}\)

=> \(P=x^{28}+y^{10}+z^{2017}=1+1+z^{2017}=2+z^{2017}\)

Với \(z=-1\Rightarrow P=1+1-1=1\)

Với \(z=1\Rightarrow P=1+1+1=3\)