Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí Ta-let có BD//CE, ta có: \(\frac{AD}{AE}=\frac{AB}{AC}\Leftrightarrow\frac{2,5}{AE}=\frac{5}{8}\)
\(\Rightarrow AE=\)4 (cm)
a/ Ta có: AD=2cm, AB=4cm, AE=12cm, AC=6cm
\(=>\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{2}{4}=\dfrac{1}{2}\\\dfrac{AE}{AC}=\dfrac{12}{6}=2\end{matrix}\right.\)
\(=>\dfrac{AE}{AC}>\dfrac{AD}{AB}\)
a. cmr: BC//DE?
có: AD = 11/8 BD (GT)
=> AB = 3/8 AD
lại có: AC = 3/8 CE (GT)
mà B, D thuộc Ax (GT); C, E thuộc Ay (GT); xAy khác góc bẹt (GT)
=> BC//DE (ĐL Talet)
b. cho BC = 3cm. DE = ?
xét tam giác ADE có: BC//DE (CMT)
=> AC/AE=BC/DE=AB/AD (hệ quả ĐL Talet)
mà AC/AE=AB/AD=3/8 (GT, CMT)
=> BC/DE = 3/8
=> 8.BC=3.DE
=> 8.3=3.DE (vì BC=3 cm)
=>24=3.DE
=>DE= 8cm