K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

2

a) Xét hai ΔAHB và Δ BCD có :

góc H = góc C (=900)

góc ABH= góc BDC ( slt)

=> ΔAHB đồng dạng vs Δ BCD(g.g)

b) Xét hai Δ ADH và DBA có :

góc A = góc H ( =900)

góc ABD= góc DAH ( cùng phụ BAH )

=> Δ ADH đồng dạng vs Δ DBA (g.g) => AD/DH=DB/AD (1)=> AD2= DH.DB (đpcm)

c)
Áp dụng định lý Pytago vào tam gica ABD vuông tại A, ta được:

BD = √ 62 +82 = 10

từ (1) => DH= 6.6/10= 3,6 cm

29 tháng 7 2018

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)

\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)

Xét \(\Delta BHD\)và \(\Delta CKD\) có: 

                         \(\widehat{BHD}=\widehat{CKD}=90^0\)

                          \(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)

Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)

b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:

                     \(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)

                       \(\widehat{AHB}=\widehat{AKC}=90^0\)

Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)

Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay  \(AB.AK=AC.AH\)

C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\) 

\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)

Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)

d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.

Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I

\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)

\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)

Suy ra: \(\widehat{F}=\widehat{IEC}\)

Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)

Nên \(\widehat{FBO}=\widehat{ICE}\)

Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)

Chúc bạn học tốt.

Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.b) So sánh hai tam giác ABC và INC.c) Chứng minh: góc MIN = 900.d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi...
Đọc tiếp

Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.

a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.

b) So sánh hai tam giác ABC và INC.

c) Chứng minh: góc MIN = 900.

d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích  ∆ABC.Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.

a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.

b) So sánh hai tam giác ABC và INC.

c) Chứng minh: góc MIN = 900.

d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích  ∆ABC.

1
20 tháng 9 2017

d) không có vị trí điểm I

4 tháng 2 2020

A B O C D x y M N H G Q Q' K

A, tam giác AOC vuông tại A 

=> góc ACO + góc COA = 90 (đl)    (1)

có góc COA + góc COD + góc DOB = 180 

có góc COD = 90 (gt)

=> góc COA + góc DOB = 90    ; (1)

=> góc ACO = góc DOB 

xét tam giác ACO và tam giác BOD có : góc CAO = góc OBD = 90 (gt)

=> tam giác ACO ~ tam giác BOD (g-g)

=> AC/BO = AO/BD 

=> AO.BO = AC.BD

Có O là trung điểm của AB (gt) => AO = OB = 1/2AB

=> 1/2.AB.1/2.AB = AC.BD

=> 1/4AB^2 = AC.BD

=> AB^2 = 4AC.BD

b,  tam giác CAO ~ tam giác OBD (Câu a)

=> AC/OB = OC/OD

OA = OB (Câu a)

=> AC/OA = OC/OD 

=> AC/OC = OA/OD 

=> tam giác ACOO ~ tam giác OCD 

=> góc ACO = góc OCD

mà CO nằm giữa CA và CD

=> CO là phân giác của góc ACD (đn)

tự chứng minh AC = CM

c,  xét tam giác AMB có : MO là đường trung tuyến (O là trung điểm của AB)

MO = AB/2 (OM = OA do tam giác AOC = tam giác MOC(câu b) và OA = AB/2)

=> tam giác AMB vuông tại M (định lí đảo)

=> AM _|_ NB                                                 (1)

xét tam giác ACM có : AC = CM (Câu b)

=> tam giác ACM cân tại C (đn) MÀ có CO là phân giác

=> CO là đường cao của tam giác ACM (đl)

=> CO _|_AM                                  (2)

(1)(2) => CO // BN (tc)

xét tam giác BAN có : O là trung điểm của AB (gt)

=> C là trung điểm của AN (tc)

d, gọi BC cắt MH tại Q 

có MH // AN do cùng _|_ BA 

xét tam giác BCN và tam giác BCA 

=> QM/CN = BQ/BC và QH/CA = BQ/BC (hệ quả)

có CN=CA (câu c)

=> MQ = QH ; Q nằm giữa H và M

=> Q là trung điểm của HM (đn)

kẻ AM cắt BD tại G; Kẻ OK  _|_ AB (K nằm cùng 1 nửa mp bờ AB chứa Ax, By)

dài chẳng làm nữa

     

2 tháng 5 2018

A B x y O C D M

a) Xét \(\Delta\)CAO và \(\Delta\)OBD: ^CAO=^OBD=900; ^AOC=^BDO (Cùng phụ ^BOD)

=> \(\Delta\)CAO ~ \(\Delta\)OBD (g.g) => \(\frac{AC}{BO}=\frac{AO}{BD}\Rightarrow AO.BO=AC.BD\)

\(\Rightarrow\frac{1}{2}AB.\frac{1}{2}AB=AC.BD\Leftrightarrow\frac{1}{4}AB^2=AC.BD\)

\(\Leftrightarrow AB^2=4.AC.BD\)(đpcm)

b) Ta có: \(\Delta\)CAO ~ \(\Delta\)OBD (cmt) => \(\frac{AC}{OB}=\frac{OC}{OD}\) hay \(\frac{AC}{OA}=\frac{OC}{OD}\) (Do OA=OB)

=> \(\frac{AC}{OC}=\frac{OA}{OD}\)=> \(\Delta\)CAO ~ \(\Delta\)COD (Cạnh huyền cạnh góc vuông)

=> ^ACO=^OCD hay ^ACO=^MCO => \(\Delta\)CAO=\(\Delta\)CMO (Cạnh huyền góc nhọn)

=> AC=CM (đpcm).

6 tháng 4 2019

O A B C D I M H K

6 tháng 4 2019

Xét \(\Delta OAC\)và \(\Delta DBO\)có :

\(\widehat{CAO}=\widehat{DBO}\left(=90^o\right)\)\(\widehat{COA}=\widehat{ODB}\)( cùng phụ \(\widehat{DOB}\))

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DBO\)( g . g )

\(\Rightarrow\)\(\frac{OA}{BD}=\frac{AC}{BO}\) \(\Rightarrow\)OA . OB = BD . AC \(\Rightarrow\)AB2 = 4BD . AC

b) \(\Delta OAC\)\(\Delta DBO\)(g.g) \(\Rightarrow\)\(\frac{AC}{AO}=\frac{OC}{OD}\)

xét \(\Delta OAC\)và \(\Delta DOC\)có : \(\frac{AC}{AO}=\frac{OC}{OD}\)\(\widehat{CAO}=\widehat{COD}=90^o\)

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DOC\)(c.g.c) \(\Rightarrow\)\(\widehat{ACO}=\widehat{OCD}\)

xét \(\Delta OAC\)và \(\Delta MCO\)có : \(\widehat{ACO}=\widehat{OCD}\); CO ( chung )

\(\Rightarrow\)\(\Delta ACO=\Delta MCO\left(ch-gn\right)\)\(\Rightarrow\)CA = CM ; OA = OM ; 

c) OC là đường trung trực AM \(\Rightarrow\)OC \(\perp\)AM

Mặt khác : OA = OB = OM \(\Rightarrow\)\(\Delta AMB\)vuông tại M

\(\Rightarrow\)OC // BM

gọi gđ BM với AC là I

\(\Delta ABI\)có OC đi qua trung điểm AB và OC // BI \(\Rightarrow\)IC = AC

gọi K là gđ BC với MH

MH // AI \(\Rightarrow\)\(\frac{MK}{IC}=\frac{BK}{BC}=\frac{KH}{AC}\) \(\Rightarrow\)BK = KH 

\(\Rightarrow\)BC đi qua trung điểm MH

d) tứ giác ABDC là hình thang vuông \(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\)

Ta có : \(AC+BD\ge2\sqrt{AC.BD}=AB\)

\(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\ge\frac{1}{2}.AB^2\)

Dấu " = " xảy ra \(\Leftrightarrow\)AC = BD = \(\frac{AB}{2}=OA\)

Vậy C thuộc Ax và cách A 1 khoảng bằng OA

17 tháng 7 2018

Mình đang cần câu này???

24 tháng 7 2021

Năm sau tui thi THPT quốc gia rồi :v, không biết bạn Hoàng Hà còn cần câu này khum nhỉ?