Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trả lời
xin lỗi a e chưa học đên bài này
a có thể lên hocj24 hỏi nha
chúc a thành công
1)Xét pt hoành độ của (P) và (d) ta có:
\(x^2=2x+2m\)
\(x^2-2x-2m=0\)
thay m=\(\frac{1}{3}\)
\(x^2-2x-2.\frac{1}{3}=0\)
\(x^2-2x-\frac{2}{3}=0\)
GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)
m=\(\frac{3-\sqrt{15}}{3}\)
b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)
B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)
áp dụng viet đc:
\(x_1+x_2=2\)
\(x_1.x_2=-2m\)
Ta có:(1+y1)(1+y2)=5
\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)
\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)
1+(x1+x2)^2-2x1x2+x1^2x2^2=5
1+(2)^2-2.(-2m)+(-2m)^2=5
1+4+4m+4m^2-5=0
4m^2+4m=0
m=-1 và m=0
2)Δ'=(-2m)^2-2.(2m^2-9)
=4m^2-4m^2+2
=2>0 ∀m
=>pt có 2 nghiệm phân biệt ∀ m
b)áp dụng viet:
x1+x2=4m/4=2m
x1.x2=2m^2-1/2
ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)
\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)
mà ta có x1+x2=2m
=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)
\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)
2{(x1^2+x2^2)+x1x2}+2m^2-9<0
2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)
2{(x1+x2)^2-x1x2)+2m^2-9<0
còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đó
a, Với m = -3 (d) có dạng: y=-3m+2
Pt hoành độ giao điểm của (P) và (d) là
\(-x^2=-3x+2\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Với x=1 ta có y= -3.1+2 = -1
Với x=2 ta có y = -3.2+2= -4
Vậy tọa độ giao điểm của (P) và (d) là (1;-1); (2;-4)
Bạn tự vẽ hình minh họa kết quả nhé
b, Vì (d') song song với đường thẳng y=-2x+2 nên (d') có dạng:
y = -2x+b
Pt hoành độ giao điểm của (P) và (d) là: \(-x^2=-2x+b\)
\(\Leftrightarrow x^2-2x+b=0\) (1)
Để (d') tiếp xúc với (P) thì pt (1) có nghiệm kép
\(\Leftrightarrow\Delta'=1^2-b=1-b=0\)
\(\Leftrightarrow b=1\)
Với b=1 thay vào (1) ta được: \(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)
Với x=1 ta có y= -1
Vậy tọa độ tiếp điểm của (P) và (d') là (1;-1)
c, Pt hoành độ giao điểm của (P) và (d) là
\(-x^2=mx+2\)
\(\Leftrightarrow x^2+mx+2=0\) (2)
Xét pt (2) có \(\Delta=m^2-4.2=m^2-8\)
Để (P) và (d) cắt nhau tại 2 điểm A; B thì pt (2) có 2 nghiệm\(\Leftrightarrow\Delta=m^2-8\ge0\)
\(\Leftrightarrow m^2\ge8\) (*)
Vì \(x_1;x_2\) là hoành độ các giao điểm của (d) và (P) nên \(x_1;x_2\) là 2 nghiệm của pt (2).
Theo định lí Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2\end{matrix}\right.\)
Theo ycbt: \(x_1^2+x_2^2=1-4\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1-4\left(x_1+x_2\right)\)
\(\Rightarrow m^2-4=1+4m\)
\(\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=5\end{matrix}\right.\)
Ta thấy m=5 TMĐK (*) còn m= -1 thì không
Vậy m=5 là giá trị cần tìm
a/ Bạn tự giải
b/ Phương trình hoành độ giao điểm:
\(x^2-2mx-m^2-2=0\)
\(ac=1.\left(-m^2-2\right)< 0\) nên pt luôn có 2 nghiệm với mọi m
Do \(x_1\) là nghiệm của pt
\(\Rightarrow x_1^2-2mx_1-m^2-2=0\Rightarrow2x_1^2=4mx_1+2m^2+4\)
Thay vào bài toán:
\(4m\left(x_1+x_2\right)-4m^2-1< 0\)
\(\Leftrightarrow8m^2-4m^2-1< 0\)
\(\Leftrightarrow4m^2< 1\Rightarrow m^2< \frac{1}{4}\Rightarrow-\frac{1}{2}< m< \frac{1}{2}\)
Để d1//d2 thì :
\(\left\{{}\begin{matrix}4m=3m^2+1\\-m-5=m^2-9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=\dfrac{1}{3}\end{matrix}\right.\\\left[{}\begin{matrix}m=\dfrac{-1+\sqrt{17}}{2}\\m=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\end{matrix}\right.\left(KTM\right)\)