Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
1.
Gọi số cần tìm là a
theo bài ra ta có: a-7 chia hết 11
a-7 chia hết 13
a-7 chia hết 17 và a là số lớn nhất có 4 chữ số
=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số
BCNN (11,13,17)=2431
(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)
=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)
mà a là số lớn nhất có 4 chữ số
nên a=9731
Vậy số cần tìm là 9731
câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)
câu .2
a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có
\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)
b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có
\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)
c. ta có \(a+b=a-3+b-4+7\)
ta có a-3 và b-4 chia hết cho 5 còn 7 chia 5 dư 2
vậy a+b chia 5 dư 2..
Trả lời\
Câu 1 : Gọi số tự nhiên cần tìm là a ( a thuộc N ; a < 999 )
a chia 8 dư 7 => ( a + 1 ) chia hết cho 8
a chia 31 dư 28 => ( a + 3) chia hết cho 31
Ta có ( a + 1 ) + 64 chia hết cho 8 = ( a + 3 ) + 62 chia hết cho 31
Vậy ( a + 65 ) chia hết cho 8 và 31
=> a + 65 chia hết cho 248
Vì a < 999 nên ( a + 65 ) < 1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì a cũng phải là số tự nhiên lớn nhất thỏa mãn
=> a = 927
Vậy số tự nhiên cần tìm là : 927
Bài 1.
Gọi số cần tìm là x (x X ; x 999)
x chia 8 dư 7 =>(x+1) chia hết cho 8
x chia 31 dư 28 =>(x+3)chia hết cho 31
Ta có (x+1 ) +64 chia hết cho 8 =(x+3)+62 chia hết cho 31
Vậy (x+65)chia hết cho 8 ;31
Mà ( 8;31)=1
=>x+65 cia hết co 248
Vì x 999 nên (x+ 65) 1064
Để x là số tự nhiên lớn nhất thõa mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thõa mãn
=> x=927
Vậy số x cần tìm là:927
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ tick cho mình đấy
b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)
Vậy (A+1) chia hết cho 12,15
BCNN của 12,15 là:
\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)
Vậy a=60-1=59
Học tốt nha ^-^
1, ĐỀ SAI EM NHÉ, PHẢI LÀ 32 CHỮ SỐ MÓI ĐÚNG
ta có: \(2C=2+2^2+2^3+...+2^{99}+2^{100}\)
=> \(C=2C-C=2^{100}-1\Rightarrow C+1=2^{100}=2.\left(2^3\right)^{33}=2.8^{33}\)
Vậy => \(2.10^{32}< 2.8^{33}< 2.10^{33}\)
=> C +1 có 32 chữ số
2, Có: \(3^{x+2}+3^{x+1}+3^x< 1053\Leftrightarrow3^x\left(3^2+3+1\right)< 1053\)
\(\Leftrightarrow13.3^x< 1053\Leftrightarrow3^x< 81=3^4\Leftrightarrow x< 4\)
Vậy x=1,2,3
3, Ta có: a= 135k +88= 120k+15k +88
Do a cia 120 dư 58 => 15k+88 dư 58 => 15k + 30 chia hết cho 120
Do a nhỏ nhất nên chọn k thỏa mãn: 15k+30=120 <=> k=
=> số a là: 135.6+88=898
1)
C = 1 + 2 + 22 + 23 + ... + 299
2C = 2 + 22 + 23 + 24 + ... + 2100
2C - C = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + ... + 299 )
C = 2100 - 1
=> C + 1 = 2100 - 1 + 1 = 2100
ta có : 1030 < 2100 vì 1030 = ( 103 ) 10 = 100010 < 2100 = ( 210 ) 10 = 102410
lại có : 2100 = 231 . 269 = 231 . 263 . 26 = 231 . ( 29 ) 7 . 64 = 231 . 5127 . 64 = 231 . ( 5127 . 64 )
1031 = ( 2 . 5 ) 31 = 231 . 531 = 231 . 528 . 53 = 231 . ( 54 ) 7 . 125 = 231 . 6257 . 125 = 231 . ( 6257 . 125 )
Vì 5127 . 64 < 6257 .125 nên 231 . ( 5127 . 64 ) < 231 . ( 6257 . 125 ) hay 2100 < 1031
1030 là số bé nhất có 31 chữ số ; 1031 là số bé nhất có 32 chữ số
Mà 1030 < 2100 < 1031
=> 2100 là số có 31 chữ số
Vậy C + 1 là số có 31 chữ số