K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

( 5a - 3b + 8c )( 5a - 3b - 8c ) 

= [ ( 5a - 3b ) + 8c ][ ( 5a - 3b ) - 8c ]

= ( 5a - 3b )2 - ( 8c )2

= 25a2 - 30ab + 9b2 - 64c2

= 25a2 - 30ab + 9b2 - 16.4c2

= 25a2 - 30ab + 9b2 - 16( a2 - b2 ) < vì a2 - b2 = 4c2 >

= 25a2 - 30ab + 9b2 - 16a2 + 16b2

= 9a2 - 30ab + 25b2

= ( 3a - 5b )2

=> đpcm

18 tháng 10 2020

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

\(VT=\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=25a^2-30ab+9b^2-64c^2\)

\(=25a^2-30ab+9b^2-16.4c^2\)

\(=25a^2-30ab+9b^2-16.\left(a^2-b^2\right)\)

\(=25a^2-30ab+9b^2-16a^2+16b^2\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\left(đpcm\right)\)

4 tháng 10 2018

Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=\left(5a-3b\right)^2-64c^2\)

\(=\left(5a-3b\right)^2-16.4c^2\)

\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)

\(=25a^2-30ab+9b^2-16a^2+16b^2\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\left(đpcm\right)\)

27 tháng 6 2018

biến đổi vế trái 

\(\Leftrightarrow\left(5a-3b\right)^2-\left(8c\right)^2\)

\(\Leftrightarrow25a^2-30ab+9b^2-64c^2\)

\(\Leftrightarrow25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)

\(\Leftrightarrow\left(25a^2-16a^2\right)-30ab+\left(9b^2+16b^2\right)\)

\(\Leftrightarrow9a^2-30ab+25b^2\)

\(\Leftrightarrow\left(3a-5b\right)^2\)  (điều cần c/m)

15 tháng 8 2017

Ta có:

\(VT=(5a-3b+8c).(5a-3b-8c)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(a^2-b^2=4c^2\) nên:

\(VT=25^2-30ab+9b^2-16.\left(a^2-b^2\right)\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2=VP\)

\(\Rightarrow\) Đpcm.

15 tháng 8 2017

thanhks

11 tháng 8 2018

hey Xuân phẹt oy là tui đây

10 tháng 9 2015

Sửa đề của bạn : a- b2 = 4c2

(5a - 3b + 8c). (5a - 3b - 8c) = (5a - 3b)2 - (8c)= 25a2 - 30ab + 9b- 16. (a2 - b2) = 9a2 - 30ab + 25b2 = (3a - 5b)2

30 tháng 8 2018

VT= (5a-3b)^2 - 64c^2=25a^2-30ab + 9b^2 -16a^2+16b^2=9a^2-30ab+25b^2= (3a-5b)^2 = VP (đpcm)

18 tháng 10 2020

Xét VT ta có :

VT = ( 5a - 3b + 8c )( 5a - 3b - 8c )

      = ( 5a - 3b )2 - ( 8c )2

      = 25a2 - 30ab + 9b2 - 64c2

      = 25a2 - 30ab + 9b2 - 16.4c2

      = 25a2 - 30ab + 9b2 - 16( a2 - b2 )

      = 25a2 - 30ab + 9b2 - 16a2 + 16b2

      = 9a2 - 30ab + 25b2

      = ( 3a - 5b )2 = VP

=> đpcm

25 tháng 6 2019

a)Ta có: a^2 + b^2 + c^2 = ab + bc + ca 
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca 
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0 
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1) 
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c. 
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2) 
Từ (1) và (2) khẳng định dấu "=" khi: 
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c 
Vậy a=b=c.

b)Ta có: 
A = (5a – 3b + 8c)(5a – 3b –8c) 
= (5a –3b)² – (8c)² 
= (25a² – 30ab +9b²) – 64c² 
Mà theo đề thì 4c² = a² –b² 
Nên ta suy ra: 
A = (25a² – 30ab +9b²) – 16(a² –b²) 
= 9a² –30ab +25b² 
= (3a –5b)² 
25 tháng 6 2019

\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)